圈地(斜率排序+坐标系旋转)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/nike0good/article/details/8716453

Problem 2 圈地(land.cpp/c/pas)

【题目描述】

2维平面上有n个木桩,你有一次圈地的机会并得到圈到的土地,为了体现你的高风亮节,你要使你圈到的土地面积尽量小。圈地需要圈一个至少3个点的多边形,多边形的顶点就是一个木桩,圈得的土地就是这个多边形内部的土地。

 

【输入格式】

第一行一个整数n,表示木桩个数。
  接下来n行,每行2个整数表示一个木桩的坐标,坐标两两不同。

【输出格式】

仅一行,表示最小圈得的土地面积,保留2位小数。

【样例输入】

样例1:
3

0 0

0 1

1 0

样例2:
4

0 0

0 1

0 2

1 1

【样例输出】

样例1:
0.50
样例2:
0.00
【数据范围】

    对于10%的数据,n<=100;
 对于30%的数据,n<=300;
 对于50%的数据,n<=500;
 对于100%的数据,n<=1000。


显然这题的多边形一定是三角形。

首先求出所有边,按k排序(必须先求出来,不能直接在排序的时候求)

然后考虑这些边,会发现正好是绕坐标系旋转一圈。

也就是说如果按照以这边为y轴从左至右排序,那么每转移一条边,只需要调换该边2个点的位置

这题没给范围,但是必须用long long

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
using namespace std;
#define MAXN (1000+10)
#define INF (1000000000)
#define eps 1e-10
struct P
{
	int x,y;
	long long operator*(const P &b)
	{
		return (long long)x*b.y-(long long)b.x*y;
	}
	friend bool operator<(P a,P b){if (a.x^b.x)	return a.x<b.x;return a.y<b.y;}
}a[MAXN];
long long abs2(long long x){if (x>0) return x;return -x;}
int n,h[MAXN];
struct E
{
	int i,j;
	double k;
	E(){}
	E(int _i,int _j):i(_i),j(_j){if (a[i].x==a[j].x) k=1e10;else k=(double)(a[i].y-a[j].y)/(a[i].x-a[j].x);}
	friend bool operator<(E a,E b){return a.k<b.k;	}
}e[MAXN*MAXN/2];
long long S2(P A,P B,P C)
{
	return abs2(A*B+B*C+C*A);
}
int size=0;
int main()
{
	freopen("land.in","r",stdin);
	freopen("land.out","w",stdout);
	scanf("%d",&n);
	for (int i=1;i<=n;i++) scanf("%d%d",&a[i].x,&a[i].y);
	long long ans=(long long)1<<60;
	/*	
	for (int i=1;i<=n-2;i++)
		for (int j=i+1;j<n;j++)
			for (int k=j+1;k<=n;k++)
				ans=min(ans,abs2(a[i]*a[j]+a[j]*a[k]+a[k]*a[i]));
	*/
	
	sort(a+1,a+1+n);
	for (int i=1;i<=n;i++) h[i]=i;
	for (int i=1;i<n;i++)
		for (int j=i+1;j<=n;j++)
		{
			e[++size]=E(i,j);			
		}
	
	sort(e+1,e+1+size);
	
	for (int i=1;i<=size&&ans;i++)
	{
		if (h[e[i].i]>1&&h[e[i].i]<n) ans=min(ans,S2(a[h[e[i].i]-1],a[h[e[i].i]],a[h[e[i].i]+1]));
		if (h[e[i].j]>1&&h[e[i].j]<n) ans=min(ans,S2(a[h[e[i].j]-1],a[h[e[i].j]],a[h[e[i].j]+1]));
		swap(a[h[e[i].i]],a[h[e[i].j]]);
		swap(h[e[i].i],h[e[i].j]);
	}
	
	printf("%.2lf",(double)ans/2);
	return 0;
}



展开阅读全文

没有更多推荐了,返回首页