HDU3507 [斜率优化]

                                                                          r

题意:把n分成任意段(每段中连续),每一段代价(∑ ci  ) +m         求总的最小代价

                                                                          i=l


作为提醒自己的经验题,即使再水也要记住坑点(其实是自己被坑的地方- -)

斜率优化裸题- -

首先定义dp[i]表示把前i个处理好的最小代价

dp[i]=min{dp[j]+m+(sum[i]-sum[j])^2}

一看这个转移就是n^2的,我们来搞成O(n)的。


h[i]=m+sum[i]^2,g[j]=sum[j]^2

->>      dp[i]=dp[j]+h[i]+g[j]-2sum[i]sum[j]

考虑对于一个j1<j2<i,如果j2更优

dp[j1]+g[j1]-2sum[i]sum[j1]>dp[j2]+g[j2]-2sum[i]sum[j2]

令y=dp[j]+g[j]

(y[j1]-y[j2])/(sum[j1]-sum[j2])<2sum[i]       (sum[j1]<sum[j2],递增的)

然后就搞成了斜率

令左边为T(j1,j2),T(j1,j2)<2sum[i]时,j2更优

对于x<y,T(x,y)<2sum[i]<2sum[i+1]<````,也就是T(x,y)永远满足条件,y一定最优,x可以删去

我们要维护的就是T(x,y)>2sum[i]这一部分


我们考虑对于T(j1,j2),T(j2,j3)应该怎么维护:

对于T(j1,j2)>2sum[i]时,j1更优,j2不是最优;

对于T(j1,j2)<2sum[i]时,如果T(j2,j3)<T(j1,j2)<2sum[i],那么j2比j1优,j3比j2优,j2不是最优,

所以T(j1,j2)>T(j2,j3)的时候,j2一定不是最优的。

所以我们要维护T(j1,j2)<T(j2,j3)


综上,

我们要维护2sum[i]<T(j1,j2)<T(j2,j3)<T(j3,j4)<T(j4,j5)<T(j5,j6)<`````

此时j1最优。

就维护一个T>sum[i]的序列并且递增


好了,接下来说明坑点

以前写Toy那道题,我直接double求斜率,然而这一次不适用,我才发现直接求double斜率会挂精度!!!!

所以我们先看成维护斜率,在判断的时候把分母乘到右边去,用乘法代替除法,大概估算用long long不会超!


#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<cmath>
#define ll long long
using namespace std;
const ll maxn=500000+20;
ll dp[maxn];//dp[i] means min cost of [1,i]
/*dp[i]=min{dp[j]+(sum[i]-sum[j])^2+M}
dp[i]=dp[j]+sum[i]^2+sum[j]^2-2sum[i]sum[j]+M
h[i]=sum[i]^2+M;
g[j]=sum[j]^2
dp[i]=dp[j]+h[i]+g[j]-2sum[i]sum[j]
对于j1<j2 j2更优
dp[j1]+g[j1]-2sum[i]sum[j1]>dp[j2]+g[j2]-2sum[i]sum[j2]
y[j]=dp[j]+g[j]
(y[j1]-y[j2]) /(sum[j1]-sum[j2])<2sum[i]
T(j1,j2)表示(j1<j2)的斜率
T(j1,j2)<2sum[i]表示j2更优  sum[i]递增 
即T(j1,j2)>2sum[i]表示j1更优 
ifx<y   T(x,y)<2sum[i]<2sum[i+1]<```   y一定更优,x舍去
所以维护T(x,y)>2sum[i]

考虑T(j1,j2)>2sum[i],j1更优
sum[i]增大,要满足这个条件,T()也应该递增
T(j1,j2)>2sum[i],j1更优
T(j1,j2)<2sum[i]时,如果T(j2,j3)<T(j1,j2)<2sum[i],一定有j3更优
所以斜率递减时j2不会成为最优解 
2sum[i]<T(j1,j2)<T(j2,j3)<``` 
*/
ll n,m;
ll q[maxn];
ll sum[maxn];
ll head,tail;
ll up(ll x,ll y)
{
	return dp[x]-dp[y]+sum[x]*sum[x]-sum[y]*sum[y];
}
ll down(ll x,ll y)
{
	return sum[x]-sum[y];
}
int main()
{
	while(scanf("%I64d%I64d",&n,&m)!=EOF)
	{
		head=tail=0;
		dp[0]=0;
		q[0]=0;
		sum[0]=0;
		for(ll i=1;i<=n;i++)
		{
			ll x;
			scanf("%I64d",&x);
			sum[i]=sum[i-1]+x;
		}
		for(ll i=1;i<=n;i++)
		{
			while(head<tail&&up(q[head],q[head+1])>=2*sum[i]*down(q[head],q[head+1]))head++;
			ll j=q[head];
			dp[i]=dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
			while(head<tail&&up(q[tail-1],q[tail])*down(q[tail],i)>=up(q[tail],i)*down(q[tail-1],q[tail]))tail--;
			q[++tail]=i;
		}
		printf("%I64d\n",dp[n]);
	}
	return 0;
}


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调。 3. 维护单调的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值