各向同性+随动硬化+过应力-vumat-理论推导
1.各向同性+随动硬化
1.1 屈服准则与本构
先不考虑过应力,屈服函数:
f
=
[
3
2
(
σ
′
−
α
)
:
(
σ
′
−
α
)
]
1
2
−
h
(
ε
ˉ
p
)
(1.1.1)
f=\left[\frac{3}{2}(\sigma'-\alpha):(\sigma'-\alpha) \right]^{\frac{1}{2}}-h(\bar\varepsilon^p)\tag{1.1.1}
f=[23(σ′−α):(σ′−α)]21−h(εˉp)(1.1.1)
其中,随动硬化的背应力的等效Mises应力满足:
α
M
i
s
e
s
=
A
(
ε
ˉ
p
)
n
(1.1.2a)
\alpha_{Mises}=A \left( \bar\varepsilon^p \right)^n\tag{1.1.2a}
αMises=A(εˉp)n(1.1.2a)
背应力的增量形式:
Δ
α
=
∂
α
M
i
s
e
s
∂
ε
ˉ
p
Δ
ε
P
(1.1.2b)
\Delta\alpha=\frac{\partial \alpha_{Mises}}{\partial \bar\varepsilon^p}\Delta \varepsilon^P\tag{1.1.2b}
Δα=∂εˉp∂αMisesΔεP(1.1.2b)
各向同性硬化:
h
(
ε
ˉ
p
)
=
B
(
ε
ˉ
p
)
m
(1.1.3)
h(\bar\varepsilon^p)=B\left( \bar\varepsilon^p \right)^m\tag{1.1.3}
h(εˉp)=B(εˉp)m(1.1.3)
偏应力形式的Mises等效应力:
σ
M
i
s
e
s
=
[
3
2
(
σ
11
′
2
+
σ
22
′
2
+
σ
33
′
2
+
2
σ
12
2
+
2
σ
23
2
+
2
σ
13
2
)
]
1
2
(1.1.4)
{σ_{Mises}}= \left [{\frac{3}{2}} \left ({\sigma'_{11}}^2+ {\sigma'_{22}}^2+{\sigma'_{33}}^2+2{\sigma_{12}}^2+2{\sigma_{23}}^2+2{\sigma_{13}}^2\right )\right ]^{\frac{1}{2}}\tag{1.1.4}
σMises=[23(σ11′2+σ22′2+σ33′2+2σ122+2σ232+2σ132)]21(1.1.4)
其中: σ 11 ′ = σ 11 − σ v \sigma'_{11}=\sigma_{11}-\sigma_{v} σ11′=σ11−σv , σ 22 ′ = σ 22 − σ v \sigma'_{22}=\sigma_{22}-\sigma_{v} σ22′=σ22−σv, σ 33 ′ = σ 33 − σ v \sigma'_{33}=\sigma_{33}-\sigma_{v} σ33′=σ33−σv; σ v = 1 3 [ σ 11 + σ 22 + σ 33 ] \sigma_{v}=\frac{1}{3} \left [\sigma_{11}+\sigma_{22}+\sigma_{33} \right] σv=31[σ11+σ22+σ33]
Mises等效塑性应变:
ε
ˉ
p
=
[
2
3
(
ε
11
2
+
ε
22
2
+
ε
33
2
+
2
ε
12
2
+
2
ε
23
2
+
2
ε
13
2
)
]
1
2
(1.1.5)
\bar{ε}^p= \left[ \frac{2}{3}\left ({\varepsilon_{11}}^2+ {\varepsilon_{22}}^2+{\varepsilon_{33}}^2+2{\varepsilon_{12}}^2+2{\varepsilon_{23}}^2+2{\varepsilon_{13}}^2\right )\right]^{\frac{1}{2}}\tag{1.1.5}
εˉp=[32(ε112+ε222+ε332+2ε122+2ε232+2ε132)]21(1.1.5)
塑性流动方向垂直于屈服面:
Δ
ε
p
=
3
2
Δ
ε
ˉ
p
σ
′
−
α
(
σ
′
−
α
)
M
i
s
e
s
(1.1.6)
\Delta \varepsilon^p=\frac{3}{2}\Delta\bar \varepsilon^p\frac{\sigma'-\alpha}{(\sigma'-\alpha)_{Mises}}\tag{1.1.6}
Δεp=23Δεˉp(σ′−α)Misesσ′−α(1.1.6)
1.2 牛顿迭代法求解
将
Δ
ε
ˉ
p
\Delta\bar{ε}^p
Δεˉp视为自变量,求解屈服函数
f
=
0
f=0
f=0。
f
f
f 对
Δ
ε
ˉ
p
\Delta\bar{ε}^p
Δεˉp的导数
f
′
f'
f′
f
′
=
∂
f
∂
Δ
ε
ˉ
p
=
3
2
(
σ
′
−
α
)
:
(
∂
σ
′
∂
Δ
ε
ˉ
p
−
∂
α
∂
Δ
ε
ˉ
p
)
[
3
2
(
σ
′
−
α
)
:
(
σ
′
−
α
)
]
1
2
−
B
m
(
ε
ˉ
p
)
m
−
1
(1.2.1)
f'=\frac{\partial f}{\partial\Delta\bar{ε}^p}=\frac{3}{2}\frac{(\sigma'-\alpha):\left(\frac{\partial \sigma'}{\partial\Delta\bar{ε}^p}-\frac{\partial \alpha}{\partial\Delta\bar{ε}^p} \right)}{\left[\frac{3}{2}(\sigma'-\alpha):(\sigma'-\alpha) \right]^{\frac{1}{2}}}-Bm\left( \bar\varepsilon^p \right)^{m-1}\tag{1.2.1}
f′=∂Δεˉp∂f=23[23(σ′−α):(σ′−α)]21(σ′−α):(∂Δεˉp∂σ′−∂Δεˉp∂α)−Bm(εˉp)m−1(1.2.1)
其中:
∂
σ
′
∂
Δ
ε
ˉ
p
=
∂
σ
′
∂
Δ
ε
p
⋅
∂
Δ
ε
p
∂
Δ
ε
ˉ
p
\frac{\partial \sigma'}{\partial\Delta\bar{ε}^p}=\frac{\partial \sigma'}{\partial\Delta{ε}^p} \cdot \frac{\partial\Delta{ε}^p}{\partial\Delta\bar{ε}^p}
∂Δεˉp∂σ′=∂Δεp∂σ′⋅∂Δεˉp∂Δεp
σ ′ = L ′ : ε e ′ = L ′ : ( ε ′ − ε P ) = 2 G ( ε ′ − ε P ) \sigma'=\mathbb L': {\varepsilon^{e}}' =\mathbb L': (\varepsilon'-\varepsilon^P)=2G (\varepsilon'-\varepsilon^P) σ′=L′:εe′=L′:(ε′−εP)=2G(ε′−εP)
∂ Δ ε ˉ p ∂ Δ ε p = 2 Δ ε p 3 Δ ε ˉ p \frac{\partial\Delta\bar{ε}^p}{\partial\Delta{ε}^p}=\frac{2\Delta{ε}^p}{3\Delta{\bar ε}^p} ∂Δεp∂Δεˉp=3Δεˉp2Δεp
∂ σ ′ ∂ Δ ε ˉ p = 3 G Δ ε ˉ p Δ ε p = 2 G ( σ ′ − α ) M i s e s σ ′ − α (1.2.2) \frac{\partial \sigma'}{\partial\Delta\bar{ε}^p}=\frac{3G\Delta{\bar ε}^p}{\Delta{ε}^p}=2G\frac{(\sigma'-\alpha)_{Mises}}{\sigma'-\alpha}\tag{1.2.2} ∂Δεˉp∂σ′=Δεp3GΔεˉp=2Gσ′−α(σ′−α)Mises(1.2.2)
∂ α ∂ Δ ε ˉ p = ∂ α ∂ α M i s e s ⋅ ∂ α M i s e s ∂ Δ ε ˉ p = α M i s e s α A n ( ε ˉ p ) n − 1 (1.2.3) \frac{\partial \alpha}{\partial\Delta\bar{ε}^p}=\frac{\partial \alpha}{\partial \alpha_{Mises}} \cdot \frac{\partial \alpha_{Mises}}{\partial\Delta\bar{ε}^p}=\frac{\alpha_{Mises}}{\alpha} An \left( \bar\varepsilon^p \right)^{n-1}\tag{1.2.3} ∂Δεˉp∂α=∂αMises∂α⋅∂Δεˉp∂αMises=ααMisesAn(εˉp)n−1(1.2.3)
因此: f ′ = 3 G ( σ ′ − α ) M i s e s − ( σ ′ − α ) α α M i s e s A n ( ε ˉ p ) n − 1 [ ( σ ′ − α ) M i s e s ] − B m ( ε ˉ p ) m − 1 (1.2.4) f'=\frac{3G(\sigma'-\alpha)_{Mises}-\frac{(\sigma'-\alpha)}{\alpha}\alpha_{Mises}An \left( \bar\varepsilon^p \right)^{n-1}}{\left[(\sigma'-\alpha)_{Mises}\right]}-Bm\left( \bar\varepsilon^p \right)^{m-1}\tag{1.2.4} f′=[(σ′−α)Mises]3G(σ′−α)Mises−α(σ′−α)αMisesAn(εˉp)n−1−Bm(εˉp)m−1(1.2.4)
第一步迭代 Δ ε ˉ 1 p = 0 \Delta\bar{ε}^p_1=0 Δεˉ1p=0
代入(1.1.1)和(1.2.4) d Δ ε ˉ p = − f f ′ d\Delta\bar{ε}^p=-\frac{f}{f'} dΔεˉp=−f′f
Δ ε ˉ n + 1 p = Δ ε ˉ n p + d Δ ε ˉ p \Delta\bar{ε}^p_{n+1}=\Delta\bar{ε}^p_{n}+d\Delta\bar{ε}^p Δεˉn+1p=Δεˉnp+dΔεˉp
更新 σ ′ \sigma' σ′ 和 α \alpha α,相应的 σ M i s e s ′ \sigma'_{Mises} σMises′, α M i s e s \alpha_{Mises} αMises 和 ( σ ′ − α ) M i s e s (\sigma'-\alpha)_{Mises} (σ′−α)Mises
判断 d Δ ε ˉ p d\Delta\bar{ε}^p dΔεˉp 的大小,大于误差值,继续循环;小于误差值,输出最后一步的 Δ ε ˉ n p \Delta\bar{ε}^p_n Δεˉnp 。
2. 各向同性+随动硬化+过应力
1.2 过应力模型
过应力函数:
η
ε
ˉ
p
˙
=
[
3
2
(
σ
′
−
α
)
:
(
σ
′
−
α
)
]
1
2
−
h
(
ε
ˉ
p
)
(1.2.1)
\eta\,\dot{\bar\varepsilon^p}=\left[\frac{3}{2}(\sigma'-\alpha):(\sigma'-\alpha) \right]^{\frac{1}{2}}-h(\bar\varepsilon^p)\tag{1.2.1}
ηεˉp˙=[23(σ′−α):(σ′−α)]21−h(εˉp)(1.2.1)
应力增量:
Δ
σ
′
=
L
′
:
Δ
ε
e
+
η
Δ
ε
˙
p
(1.2.2)
\Delta \sigma'= \mathbb{L'}:\Delta\varepsilon^e+\eta\Delta\dot\varepsilon^p\tag{1.2.2}
Δσ′=L′:Δεe+ηΔε˙p(1.2.2)
中心差值:
Δ
ε
ˉ
p
=
1
2
(
ε
ˉ
˙
t
p
+
ε
ˉ
˙
t
+
Δ
t
p
)
Δ
t
\Delta \bar\varepsilon^p=\frac{1}{2} \left(\dot{\bar\varepsilon}^p_t + \dot{\bar\varepsilon}^p_{t+\Delta t} \right) \Delta t
Δεˉp=21(εˉ˙tp+εˉ˙t+Δtp)Δt
ε
ˉ
˙
t
+
Δ
t
p
=
2
Δ
ε
ˉ
p
Δ
t
−
ε
ˉ
˙
t
p
(1.2.3)
\dot{\bar\varepsilon}^p_{t+\Delta t}=\frac{2\Delta \bar\varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t \tag{1.2.3}
εˉ˙t+Δtp=Δt2Δεˉp−εˉ˙tp(1.2.3)
未知量
Δ
ε
ˉ
p
\Delta \bar\varepsilon^p
Δεˉp,
η ( 2 Δ ε ˉ p Δ t − ε ˉ ˙ t p ) = [ 3 2 ( σ t + Δ t ′ − α t + Δ t ) : ( σ t + Δ t ′ − α t + Δ t ) ] 1 2 − h ( ε ˉ t + Δ t p ) \eta\left( \frac{2\Delta \bar\varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t \right) =\left[\frac{3}{2}(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}):(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]^{\frac{1}{2}}-h(\bar\varepsilon^p_{t+\Delta t}) η(Δt2Δεˉp−εˉ˙tp)=[23(σt+Δt′−αt+Δt):(σt+Δt′−αt+Δt)]21−h(εˉt+Δtp)
ϕ = η ( 2 Δ ε ˉ p Δ t − ε ˉ ˙ t p ) − [ 3 2 ( σ t + Δ t ′ − α t + Δ t ) : ( σ t + Δ t ′ − α t + Δ t ) ] 1 2 + h ( ε ˉ t + Δ t p ) = 0 (1.2.4) \bm{\phi}=\eta\left( \frac{2\Delta \bar\varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t \right) -\left[\frac{3}{2}(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}):(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]^{\frac{1}{2}}+h(\bar\varepsilon^p_{t+\Delta t})=0\tag{1.2.4} ϕ=η(Δt2Δεˉp−εˉ˙tp)−[23(σt+Δt′−αt+Δt):(σt+Δt′−αt+Δt)]21+h(εˉt+Δtp)=0(1.2.4)
2.2 牛顿迭代法求解
求解函数 ϕ = 0 \bm{\phi}=0 ϕ=0, ϕ ′ = ∂ ϕ ∂ Δ ε ˉ p \bm{\phi}'=\frac{\partial \bm{\phi}}{\partial \Delta \bar\varepsilon^p} ϕ′=∂Δεˉp∂ϕ
ϕ ′ = 2 η Δ t − [ 3 2 ( ∂ σ t + Δ t ′ ∂ Δ ε ˉ p − α t + Δ t ) ∂ Δ ε ˉ p : ( σ t + Δ t ′ − α t + Δ t ) ] [ 3 2 ( σ t + Δ t ′ − α t + Δ t ) : ( σ t + Δ t ′ − α t + Δ t ) ] 1 2 + ∂ h ( ε ˉ t + Δ t p ) ∂ Δ ε ˉ p (2.2.1) \bm{\phi}'= \frac{2\eta}{\Delta t}-\frac{\left[\frac{3}{2}(\frac{\partial\sigma'_{t+\Delta t}}{\partial \Delta \bar\varepsilon^p}-\frac{\alpha_{t+\Delta t})}{\partial \Delta \bar\varepsilon^p}:(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]}{\left[\frac{3}{2}(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}):(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]^{\frac{1}{2}}}+\frac{\partial h(\bar\varepsilon^p_{t+\Delta t})}{\partial \Delta \bar\varepsilon^p}\tag{2.2.1} ϕ′=Δt2η−[23(σt+Δt′−αt+Δt):(σt+Δt′−αt+Δt)]21[23(∂Δεˉp∂σt+Δt′−∂Δεˉpαt+Δt):(σt+Δt′−αt+Δt)]+∂Δεˉp∂h(εˉt+Δtp)(2.2.1)
应力更新的表达式:
σ
t
+
Δ
t
′
=
L
′
:
(
ε
t
e
+
Δ
ε
−
Δ
ε
ˉ
p
)
+
2
η
(
Δ
ε
p
Δ
t
−
ε
ˉ
˙
t
p
)
(2.2.2)
\sigma'_{t+\Delta t}=\mathbb{L'}:(\varepsilon^e_t+\Delta \varepsilon-\Delta \bar\varepsilon^p)+2\eta(\frac{\Delta \varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t )\tag{2.2.2}
σt+Δt′=L′:(εte+Δε−Δεˉp)+2η(ΔtΔεp−εˉ˙tp)(2.2.2)
应力对等效性应变求导:
∂
σ
t
+
Δ
t
′
∂
Δ
ε
ˉ
p
=
−
L
′
:
I
+
2
η
Δ
t
\frac{\partial\sigma'_{t+\Delta t}}{\partial \Delta \bar\varepsilon^p}=-\mathbb{L'}: I+\frac{2\eta}{\Delta t}
∂Δεˉp∂σt+Δt′=−L′:I+Δt2η
背应力对等效塑性应变求导,与(1.2.3)相同:
∂
α
∂
Δ
ε
ˉ
p
=
α
M
i
s
e
s
t
+
Δ
t
α
t
+
Δ
α
A
n
(
ε
ˉ
p
)
n
−
1
(2.2.3)
\frac{\partial \alpha}{\partial\Delta\bar{ε}^p}=\frac{\alpha_{Mises_{t+\Delta t}}}{\alpha_t+\Delta \alpha} An \left( \bar\varepsilon^p \right)^{n-1}\tag{2.2.3}
∂Δεˉp∂α=αt+ΔααMisest+ΔtAn(εˉp)n−1(2.2.3)