各向同性+随动硬化+过应力-vumat-理论推导

1.各向同性+随动硬化

1.1 屈服准则与本构

先不考虑过应力,屈服函数:
f = [ 3 2 ( σ ′ − α ) : ( σ ′ − α ) ] 1 2 − h ( ε ˉ p ) (1.1.1) f=\left[\frac{3}{2}(\sigma'-\alpha):(\sigma'-\alpha) \right]^{\frac{1}{2}}-h(\bar\varepsilon^p)\tag{1.1.1} f=[23(σα):(σα)]21h(εˉp)(1.1.1)
其中,随动硬化的背应力的等效Mises应力满足:
α M i s e s = A ( ε ˉ p ) n (1.1.2a) \alpha_{Mises}=A \left( \bar\varepsilon^p \right)^n\tag{1.1.2a} αMises=A(εˉp)n(1.1.2a)
背应力的增量形式:
Δ α = ∂ α M i s e s ∂ ε ˉ p Δ ε P (1.1.2b) \Delta\alpha=\frac{\partial \alpha_{Mises}}{\partial \bar\varepsilon^p}\Delta \varepsilon^P\tag{1.1.2b} Δα=εˉpαMisesΔεP(1.1.2b)
各向同性硬化:
h ( ε ˉ p ) = B ( ε ˉ p ) m (1.1.3) h(\bar\varepsilon^p)=B\left( \bar\varepsilon^p \right)^m\tag{1.1.3} h(εˉp)=B(εˉp)m(1.1.3)

偏应力形式的Mises等效应力:
σ M i s e s = [ 3 2 ( σ 11 ′ 2 + σ 22 ′ 2 + σ 33 ′ 2 + 2 σ 12 2 + 2 σ 23 2 + 2 σ 13 2 ) ] 1 2 (1.1.4) {σ_{Mises}}= \left [{\frac{3}{2}} \left ({\sigma'_{11}}^2+ {\sigma'_{22}}^2+{\sigma'_{33}}^2+2{\sigma_{12}}^2+2{\sigma_{23}}^2+2{\sigma_{13}}^2\right )\right ]^{\frac{1}{2}}\tag{1.1.4} σMises=[23(σ112+σ222+σ332+2σ122+2σ232+2σ132)]21(1.1.4)

其中: σ 11 ′ = σ 11 − σ v \sigma'_{11}=\sigma_{11}-\sigma_{v} σ11=σ11σv σ 22 ′ = σ 22 − σ v \sigma'_{22}=\sigma_{22}-\sigma_{v} σ22=σ22σv σ 33 ′ = σ 33 − σ v \sigma'_{33}=\sigma_{33}-\sigma_{v} σ33=σ33σv σ v = 1 3 [ σ 11 + σ 22 + σ 33 ] \sigma_{v}=\frac{1}{3} \left [\sigma_{11}+\sigma_{22}+\sigma_{33} \right] σv=31[σ11+σ22+σ33]

Mises等效塑性应变:
ε ˉ p = [ 2 3 ( ε 11 2 + ε 22 2 + ε 33 2 + 2 ε 12 2 + 2 ε 23 2 + 2 ε 13 2 ) ] 1 2 (1.1.5) \bar{ε}^p= \left[ \frac{2}{3}\left ({\varepsilon_{11}}^2+ {\varepsilon_{22}}^2+{\varepsilon_{33}}^2+2{\varepsilon_{12}}^2+2{\varepsilon_{23}}^2+2{\varepsilon_{13}}^2\right )\right]^{\frac{1}{2}}\tag{1.1.5} εˉp=[32(ε112+ε222+ε332+2ε122+2ε232+2ε132)]21(1.1.5)

塑性流动方向垂直于屈服面:
Δ ε p = 3 2 Δ ε ˉ p σ ′ − α ( σ ′ − α ) M i s e s (1.1.6) \Delta \varepsilon^p=\frac{3}{2}\Delta\bar \varepsilon^p\frac{\sigma'-\alpha}{(\sigma'-\alpha)_{Mises}}\tag{1.1.6} Δεp=23Δεˉp(σα)Misesσα(1.1.6)

1.2 牛顿迭代法求解

Δ ε ˉ p \Delta\bar{ε}^p Δεˉp视为自变量,求解屈服函数 f = 0 f=0 f=0 f f f Δ ε ˉ p \Delta\bar{ε}^p Δεˉp的导数 f ′ f' f
f ′ = ∂ f ∂ Δ ε ˉ p = 3 2 ( σ ′ − α ) : ( ∂ σ ′ ∂ Δ ε ˉ p − ∂ α ∂ Δ ε ˉ p ) [ 3 2 ( σ ′ − α ) : ( σ ′ − α ) ] 1 2 − B m ( ε ˉ p ) m − 1 (1.2.1) f'=\frac{\partial f}{\partial\Delta\bar{ε}^p}=\frac{3}{2}\frac{(\sigma'-\alpha):\left(\frac{\partial \sigma'}{\partial\Delta\bar{ε}^p}-\frac{\partial \alpha}{\partial\Delta\bar{ε}^p} \right)}{\left[\frac{3}{2}(\sigma'-\alpha):(\sigma'-\alpha) \right]^{\frac{1}{2}}}-Bm\left( \bar\varepsilon^p \right)^{m-1}\tag{1.2.1} f=Δεˉpf=23[23(σα):(σα)]21(σα):(ΔεˉpσΔεˉpα)Bm(εˉp)m1(1.2.1)
其中:
∂ σ ′ ∂ Δ ε ˉ p = ∂ σ ′ ∂ Δ ε p ⋅ ∂ Δ ε p ∂ Δ ε ˉ p \frac{\partial \sigma'}{\partial\Delta\bar{ε}^p}=\frac{\partial \sigma'}{\partial\Delta{ε}^p} \cdot \frac{\partial\Delta{ε}^p}{\partial\Delta\bar{ε}^p} Δεˉpσ=ΔεpσΔεˉpΔεp

σ ′ = L ′ : ε e ′ = L ′ : ( ε ′ − ε P ) = 2 G ( ε ′ − ε P ) \sigma'=\mathbb L': {\varepsilon^{e}}' =\mathbb L': (\varepsilon'-\varepsilon^P)=2G (\varepsilon'-\varepsilon^P) σ=L:εe=L:(εεP)=2G(εεP)

∂ Δ ε ˉ p ∂ Δ ε p = 2 Δ ε p 3 Δ ε ˉ p \frac{\partial\Delta\bar{ε}^p}{\partial\Delta{ε}^p}=\frac{2\Delta{ε}^p}{3\Delta{\bar ε}^p} ΔεpΔεˉp=3Δεˉp2Δεp

∂ σ ′ ∂ Δ ε ˉ p = 3 G Δ ε ˉ p Δ ε p = 2 G ( σ ′ − α ) M i s e s σ ′ − α (1.2.2) \frac{\partial \sigma'}{\partial\Delta\bar{ε}^p}=\frac{3G\Delta{\bar ε}^p}{\Delta{ε}^p}=2G\frac{(\sigma'-\alpha)_{Mises}}{\sigma'-\alpha}\tag{1.2.2} Δεˉpσ=Δεp3GΔεˉp=2Gσα(σα)Mises(1.2.2)

∂ α ∂ Δ ε ˉ p = ∂ α ∂ α M i s e s ⋅ ∂ α M i s e s ∂ Δ ε ˉ p = α M i s e s α A n ( ε ˉ p ) n − 1 (1.2.3) \frac{\partial \alpha}{\partial\Delta\bar{ε}^p}=\frac{\partial \alpha}{\partial \alpha_{Mises}} \cdot \frac{\partial \alpha_{Mises}}{\partial\Delta\bar{ε}^p}=\frac{\alpha_{Mises}}{\alpha} An \left( \bar\varepsilon^p \right)^{n-1}\tag{1.2.3} Δεˉpα=αMisesαΔεˉpαMises=ααMisesAn(εˉp)n1(1.2.3)

因此: f ′ = 3 G ( σ ′ − α ) M i s e s − ( σ ′ − α ) α α M i s e s A n ( ε ˉ p ) n − 1 [ ( σ ′ − α ) M i s e s ] − B m ( ε ˉ p ) m − 1 (1.2.4) f'=\frac{3G(\sigma'-\alpha)_{Mises}-\frac{(\sigma'-\alpha)}{\alpha}\alpha_{Mises}An \left( \bar\varepsilon^p \right)^{n-1}}{\left[(\sigma'-\alpha)_{Mises}\right]}-Bm\left( \bar\varepsilon^p \right)^{m-1}\tag{1.2.4} f=[(σα)Mises]3G(σα)Misesα(σα)αMisesAn(εˉp)n1Bm(εˉp)m1(1.2.4)

第一步迭代 Δ ε ˉ 1 p = 0 \Delta\bar{ε}^p_1=0 Δεˉ1p=0

代入(1.1.1)和(1.2.4) d Δ ε ˉ p = − f f ′ d\Delta\bar{ε}^p=-\frac{f}{f'} dΔεˉp=ff

Δ ε ˉ n + 1 p = Δ ε ˉ n p + d Δ ε ˉ p \Delta\bar{ε}^p_{n+1}=\Delta\bar{ε}^p_{n}+d\Delta\bar{ε}^p Δεˉn+1p=Δεˉnp+dΔεˉp

更新 σ ′ \sigma' σ α \alpha α,相应的 σ M i s e s ′ \sigma'_{Mises} σMises α M i s e s \alpha_{Mises} αMises ( σ ′ − α ) M i s e s (\sigma'-\alpha)_{Mises} (σα)Mises

判断 d Δ ε ˉ p d\Delta\bar{ε}^p dΔεˉp 的大小,大于误差值,继续循环;小于误差值,输出最后一步的 Δ ε ˉ n p \Delta\bar{ε}^p_n Δεˉnp

2. 各向同性+随动硬化+过应力

1.2 过应力模型

过应力函数:
η   ε ˉ p ˙ = [ 3 2 ( σ ′ − α ) : ( σ ′ − α ) ] 1 2 − h ( ε ˉ p ) (1.2.1) \eta\,\dot{\bar\varepsilon^p}=\left[\frac{3}{2}(\sigma'-\alpha):(\sigma'-\alpha) \right]^{\frac{1}{2}}-h(\bar\varepsilon^p)\tag{1.2.1} ηεˉp˙=[23(σα):(σα)]21h(εˉp)(1.2.1)

应力增量:
Δ σ ′ = L ′ : Δ ε e + η Δ ε ˙ p (1.2.2) \Delta \sigma'= \mathbb{L'}:\Delta\varepsilon^e+\eta\Delta\dot\varepsilon^p\tag{1.2.2} Δσ=L:Δεe+ηΔε˙p(1.2.2)
中心差值:
Δ ε ˉ p = 1 2 ( ε ˉ ˙ t p + ε ˉ ˙ t + Δ t p ) Δ t \Delta \bar\varepsilon^p=\frac{1}{2} \left(\dot{\bar\varepsilon}^p_t + \dot{\bar\varepsilon}^p_{t+\Delta t} \right) \Delta t Δεˉp=21(εˉ˙tp+εˉ˙t+Δtp)Δt

ε ˉ ˙ t + Δ t p = 2 Δ ε ˉ p Δ t − ε ˉ ˙ t p (1.2.3) \dot{\bar\varepsilon}^p_{t+\Delta t}=\frac{2\Delta \bar\varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t \tag{1.2.3} εˉ˙t+Δtp=Δt2Δεˉpεˉ˙tp(1.2.3)
未知量 Δ ε ˉ p \Delta \bar\varepsilon^p Δεˉp

η ( 2 Δ ε ˉ p Δ t − ε ˉ ˙ t p ) = [ 3 2 ( σ t + Δ t ′ − α t + Δ t ) : ( σ t + Δ t ′ − α t + Δ t ) ] 1 2 − h ( ε ˉ t + Δ t p ) \eta\left( \frac{2\Delta \bar\varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t \right) =\left[\frac{3}{2}(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}):(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]^{\frac{1}{2}}-h(\bar\varepsilon^p_{t+\Delta t}) η(Δt2Δεˉpεˉ˙tp)=[23(σt+Δtαt+Δt):(σt+Δtαt+Δt)]21h(εˉt+Δtp)

ϕ = η ( 2 Δ ε ˉ p Δ t − ε ˉ ˙ t p ) − [ 3 2 ( σ t + Δ t ′ − α t + Δ t ) : ( σ t + Δ t ′ − α t + Δ t ) ] 1 2 + h ( ε ˉ t + Δ t p ) = 0 (1.2.4) \bm{\phi}=\eta\left( \frac{2\Delta \bar\varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t \right) -\left[\frac{3}{2}(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}):(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]^{\frac{1}{2}}+h(\bar\varepsilon^p_{t+\Delta t})=0\tag{1.2.4} ϕ=η(Δt2Δεˉpεˉ˙tp)[23(σt+Δtαt+Δt):(σt+Δtαt+Δt)]21+h(εˉt+Δtp)=0(1.2.4)

2.2 牛顿迭代法求解

求解函数 ϕ = 0 \bm{\phi}=0 ϕ=0 ϕ ′ = ∂ ϕ ∂ Δ ε ˉ p \bm{\phi}'=\frac{\partial \bm{\phi}}{\partial \Delta \bar\varepsilon^p} ϕ=Δεˉpϕ

ϕ ′ = 2 η Δ t − [ 3 2 ( ∂ σ t + Δ t ′ ∂ Δ ε ˉ p − α t + Δ t ) ∂ Δ ε ˉ p : ( σ t + Δ t ′ − α t + Δ t ) ] [ 3 2 ( σ t + Δ t ′ − α t + Δ t ) : ( σ t + Δ t ′ − α t + Δ t ) ] 1 2 + ∂ h ( ε ˉ t + Δ t p ) ∂ Δ ε ˉ p (2.2.1) \bm{\phi}'= \frac{2\eta}{\Delta t}-\frac{\left[\frac{3}{2}(\frac{\partial\sigma'_{t+\Delta t}}{\partial \Delta \bar\varepsilon^p}-\frac{\alpha_{t+\Delta t})}{\partial \Delta \bar\varepsilon^p}:(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]}{\left[\frac{3}{2}(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}):(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]^{\frac{1}{2}}}+\frac{\partial h(\bar\varepsilon^p_{t+\Delta t})}{\partial \Delta \bar\varepsilon^p}\tag{2.2.1} ϕ=Δt2η[23(σt+Δtαt+Δt):(σt+Δtαt+Δt)]21[23(Δεˉpσt+ΔtΔεˉpαt+Δt):(σt+Δtαt+Δt)]+Δεˉph(εˉt+Δtp)(2.2.1)

应力更新的表达式:
σ t + Δ t ′ = L ′ : ( ε t e + Δ ε − Δ ε ˉ p ) + 2 η ( Δ ε p Δ t − ε ˉ ˙ t p ) (2.2.2) \sigma'_{t+\Delta t}=\mathbb{L'}:(\varepsilon^e_t+\Delta \varepsilon-\Delta \bar\varepsilon^p)+2\eta(\frac{\Delta \varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t )\tag{2.2.2} σt+Δt=L:(εte+ΔεΔεˉp)+2η(ΔtΔεpεˉ˙tp)(2.2.2)

应力对等效性应变求导:
∂ σ t + Δ t ′ ∂ Δ ε ˉ p = − L ′ : I + 2 η Δ t \frac{\partial\sigma'_{t+\Delta t}}{\partial \Delta \bar\varepsilon^p}=-\mathbb{L'}: I+\frac{2\eta}{\Delta t} Δεˉpσt+Δt=L:I+Δt2η

背应力对等效塑性应变求导,与(1.2.3)相同:
∂ α ∂ Δ ε ˉ p = α M i s e s t + Δ t α t + Δ α A n ( ε ˉ p ) n − 1 (2.2.3) \frac{\partial \alpha}{\partial\Delta\bar{ε}^p}=\frac{\alpha_{Mises_{t+\Delta t}}}{\alpha_t+\Delta \alpha} An \left( \bar\varepsilon^p \right)^{n-1}\tag{2.2.3} Δεˉpα=αt+ΔααMisest+ΔtAn(εˉp)n1(2.2.3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值