0 引言
本文主要参考 James Tsui 的 Digital Techniques for Wideband Receivers第三版的第12章部分。
主要研究采用13位 Barker 码编码的BPSK信号检测。 讨论三个部分:
一、是否存在信号
二、存在的信号是BPSK信号还是连续波信号
三、BPSK信号的相变位置如何确定(相变位置用于确定码元长度)
1 判断接收数据是否存在信号
1.1 Barker 码简单介绍
巴克码作为伪随机码序列之一,它有着良好的相关特性和尖锐峰特性。已找到的只有 9 组,并且已经证明在长度小于12100的范围内不存在其他长度的巴克码,已知的其中长度的巴克码如下:
码组长度 | Barker 码组 |
---|---|
2 | ++ ,+- |
3 | ++- |
4 | +++-,++-+ |
5 | +++-+ |
7 | +++--+- |
11 | +++---+--+- |
13 | +++++--++-+-+ |
表中“+”表示+1,“-”表示-1
本文主要采用13位的 Barker 码组,其自相关特性如图1所示
可以看见13位巴克码有很尖锐的相关峰和恒定的副瓣。
1.2 基本模型
假定收集到的BPSK信号脉冲宽度为 1
μ
s
μs
μs。采样率为 2.56 GHz,则 1
μ
s
μs
μs 采样 2560 个数据点。将BPSK用13位 Barker 码编码,当载波为 141MHz时, 1
μ
s
μs
μs 内包含 141 个载波周期
N
r
=
f
c
×
1
μ
s
=
f
c
×
1
0
−
6
=
141
(1.1)
N_r = f_c \times 1 μs = f_c \times 10^{-6}=141 \tag{1.1}
Nr=fc×1μs=fc×10−6=141(1.1)这1
μ
s
μs
μs 内包含完整的一个BPSK信号,所以13位 Barker 码的每一个符号的过采样倍数为
N
c
=
f
l
o
o
r
(
N
r
13
)
=
10
(1.2)
N_c = floor(\frac{{N_r}}{{13}})=10 \tag{1.2}
Nc=floor(13Nr)=10(1.2)即每个符号10倍过采样,一个BPSK信号用13位 Barker 码编码,其中每个符号占据 10 个载波周期,共占据130个载波周期,当采样周期为
t
s
t_s
ts 时,这一个BPSK信号包含了
f
l
o
o
r
(
130
f
c
×
t
s
)
=
2360
floor(\frac{130}{f_c\times ts})=2360
floor(fc×ts130)=2360 个采样点。
则信号模型为,一段2560长度的采样点,其中有2360个采样点包含BPSK信号,而在采集信号的头部和尾部为噪声。但当采集信号的头部和尾部为噪声时,意味着会损失
8
%
8\%
8% 的能量,为了消除这一影响,将头部和尾部拓展信号。仿真信号如图2
1.3 阈值和检测概率
已知对于一个二维的随机向量的两个分量呈独立的、有着相同的方差的正态分布时,这个向量的模呈瑞利分布。因此,当输入只包含均值为0,标准差为1的高斯分布噪声时,其振幅近似为瑞利分布,因此可以利用振幅找到一个阈值。
在接下来的模拟中,采样频率为2.56 GHz,FFT加矩形窗,长度从 32 点到 1024 点之间变化。重复运行 1000 次。易得振幅
A
A
A 为
A
=
X
r
2
(
k
)
+
X
i
2
(
k
)
(1.3)
A = \sqrt {X_r^2(k) + X_i^2(k)} \tag{1.3}
A=Xr2(k)+Xi2(k)(1.3)其中
X
(
k
)
X(k)
X(k) 是第
k
k
k 个频率的输出,下标
r
r
r 和
i
i
i 表示FFT输出的实数和虚数。A的分布应为瑞利分布,为
p
(
r
)
=
r
σ
2
e
−
r
2
2
σ
2
(1.4)
p(r) = \frac{r}{{{\sigma ^2}}}{e^{\frac{{ - {r^2}}}{{2{\sigma ^2}}}}} \tag{1.4}
p(r)=σ2re2σ2−r2(1.4)(1.4)式中只有一个常数
σ
2
{\sigma ^2}
σ2,
r
r
r 是一个变量。这个值
σ
{\sigma}
σ 与均值或标准差有关
σ
=
m
π
/
2
σ
=
2
v
4
−
π
(1.5)
\begin{array}{l} \sigma = \frac{m}{{\sqrt {\pi /2} }}\\\\ \sigma = \sqrt {\frac{{2v}}{{4 - \pi }}} \end{array} \tag{1.5}
σ=π/2mσ=4−π2v(1.5)其中
m
m
m 为均值,
v
v
v 为实测噪声分布的方差。由上述模拟得到均值和方差。由这两个关系式得到的
σ
\sigma
σ 值非常接近。在本研究中使用的是这两个值的平均值。
当噪声分布近似为瑞利分布时,阈值可设置为虚警概率的函数
t
h
r
=
−
2
σ
2
ln
(
P
f
a
s
)
(1.6)
thr = \sqrt { - 2{\sigma ^2}\ln ({P_{fas}})} \tag{1.6}
thr=−2σ2ln(Pfas)(1.6)其中
P
f
a
s
P_{fas}
Pfas 为虚警概率,可设置为10-7。
(1.6)没给推导,猜测是积分得出的。
图 3 显示了256点FFT操作的模拟结果。点“o”是从振幅分布的直方图中得到的。瑞利分布显示为实线。由于来自不同FFT长度的所有噪声振幅都很好地拟合到瑞利分布,因此只显示了256点的FFT结果。
不同FFT长度得到的阈值如表2所示。
FFT 长度 | 32 | 64 | 128 | 256 | 512 | 1024 |
---|---|---|---|---|---|---|
门限 | 22.92 | 32.07 | 45.26 | 64.24 | 90.66 | 128.33 |
在表2中,从256点FFT开始计算阈值100次,标准差约为0.35,变化约为0.54%(0.34/64.25)。
为了尽可能减小误差和多使用数据。实际工程常采用幅度求和法,字面理解就是对FFT输出求和。当 2560 个数据点全部为噪声时,将 2560 个数据点分为 20 帧,每帧包含 128 个数据点。对每帧数据加 128 点的 Blackman 窗做FFT,得到 128 点的FFT结果,将 第 6-58 个数据用于后续计算,将 20 帧输出的幅度相加,这个过程共进行 10000 次,得到 53×10000个数据点。
1.3.1 卷积法求阈值
卷积法求阈值的基本方法如下。假设FFT输出为瑞利分布,两个振幅的和相当于两个瑞利函数的卷积。如果求和是n次,瑞利函数将被卷积n次。这个卷积可以通过数值积分来实现。一旦得到了想要的卷积结果,下一步就是寻找阈值。由于卷积结果是数值形式,所以阈值是通过试错得到的。总体方法可以总结如下:
- 使用FFT输出找到瑞利分布。FFT输出将用于寻找瑞利分布,也用于求和过程。通过式(1.6)找到瑞利分布。一个阈值,称为初始阈值,是从瑞利分布计算出来的。仿真结果表明,初始阈值总是小于卷积得到的阈值,即期望阈值。
- 对得到的瑞利函数进行数值卷积。瑞利函数的长度[或(1.4)中的r值]从0选择到1.2倍的初始阈值。如果(1.4)中的r值不够大,卷积结果会不准确。仿真结果表明,当瑞利函数长度从0到初始阈值范围内时,计算得到的期望阈值基本不变。这意味着选择从0到初始阈值的瑞利值足够长来覆盖大部分信息。
- 通过试错来找到阈值。从初始阈值到卷积函数的端点进行数值积分。如果积分结果大于期望的虚警概率(10-7),则初始点比初始阈值增加0.005,重新进行积分。直到积分结果小于 1 0 − 7 10^{-7} 10−7。积分步长选择为0.005,因为它旨在保持阈值上的两个小数点。
1.3.2 高斯拟合法求阈值
另一种方法是高斯拟合法。认为得到 53×10000个数据点满足高斯分布。高斯函数可以写成
p
(
r
)
=
1
2
π
σ
e
−
(
r
−
μ
)
2
2
σ
2
(1.7)
p(r) = \frac{1}{{\sqrt {2\pi } \sigma }}{e^{ - \frac{{{{(r - \mu )}^2}}}{{2{\sigma ^2}}}}} \tag{1.7}
p(r)=2πσ1e−2σ2(r−μ)2(1.7)其中
μ
\mu
μ 是均值,
σ
\sigma
σ 是分布的标准差。一旦找到这两个值,就可以得到高斯分布。为了找出虚警的概率,需要进行积分。高斯函数的积分是误差函数,可以写成
e
r
f
=
2
π
∫
0
r
e
−
t
2
d
t
(1.8)
erf = \frac{2}{{\sqrt \pi }}\int_0^r {{e^{ - {t^2}}}dt} \tag{1.8}
erf=π2∫0re−t2dt(1.8)由MATLAB程序中的逆互补误差函数erfcinv,可由下式得到高斯分布的虚警概率
P
f
a
{P_{fa}}
Pfa。
P
f
a
=
∫
t
h
∞
p
n
(
x
)
d
x
=
1
−
∫
−
∞
t
h
p
n
(
x
)
d
x
(1.9)
{P_{fa}} = \int_{th}^\infty {{p_n}(x)dx} = 1 - \int_{ - \infty }^{th} {{p_n}(x)dx} \tag{1.9}
Pfa=∫th∞pn(x)dx=1−∫−∞thpn(x)dx(1.9)其中
P
n
(
x
)
P_n(x)
Pn(x) 为噪声高斯分布,如(1.7)所示。如果给定
P
f
a
{P_{fa}}
Pfa 的值,则可以发现阈值
t
h
th
th 为
t
h
=
2
e
r
f
c
i
n
v
(
2
P
f
a
)
σ
+
m
(1.10)
th = \sqrt 2 erfcinv(2{P_{fa}})\sigma + m \tag{1.10}
th=2erfcinv(2Pfa)σ+m(1.10)如果
P
f
a
{P_{fa}}
Pfa 为
1
0
−
7
10^{-7}
10−7,阈值
t
h
th
th 可以近似为
t
h
≈
m
+
5.2
σ
(1.11)
th \approx m + 5.2\sigma \tag{1.11}
th≈m+5.2σ(1.11)该阈值产生的
P
f
a
≈
0.9964
×
1
0
−
7
{P_{fa}}\approx0.9964 \times 10^{-7}
Pfa≈0.9964×10−7,略低于期望值。
两个求和的结果如图4所示。在这个图中,可以看到数据和高斯分布有轻微的不匹配。
最后,利用卷积法和近似高斯分布计算阈值。结果如表 3 所示。在这些模拟中使用的总和数据的数量是10,000点。为了通过这两种方法获得阈值,使用相同的噪声输入数据。为了得到卷积函数,必须先利用噪声数据得到瑞利分布。为了得到高斯分布,只需要振幅数据的累加。
在表 3 中,第一列是求和的数量。第二列和第三列是通过卷积和高斯方法得到的阈值。第四列是百分比误差,是两个计算阈值的差除以通过卷积法得到的阈值。
求和数 | 卷积法门限 | 高斯拟合门限 | 百分比差异 |
---|---|---|---|
2 | 8.54 | 7.37 | 13.67 |
4 | 13.19 | 11.88 | 9.92 |
8 | 21.12 | 19.55 | 7.43 |
16 | 35.18 | 33.61 | 4.44 |
32 | 61.00 | 59.41 | 2.62 |
64 | 109.04 | 107.39 | 1.51 |
128 | 200.75 | 199.12 | 0.81 |
表3得到的数据用的点数是10,000点,对于本文采用的 53×10000 点,应该更服从高斯分布,于是用高斯拟合得到阈值,在参照表 3 进行微调,因为求和数为20,所以将高斯拟合得到阈值除以 0.96 得到最终阈值,大约为185.
当虚警概率为 1 0 − 7 10^{-7} 10−7 阈值设为185。设输入信号频率在141~1140MHz随机产生,初始相位随机,可以得到检测概率图如图4所示。
可以看到,当S/N为-11.3dB时,检测概率大概为 90%,与连续波差0.4dB。原因在于如果 20帧数据中的某一特定帧内出现一次相变,那么信号能量会扩展到邻近的频点,所以信号在频域中幅度会略微降低。
2 判断存在的信号是BPSK信号还是连续波信号
通过上述的介绍,已经可以知道如何从数据中确定是否有信号。接下来要判断存在的信号是BPSK信号还是连续波信号。图 5 给出了BPSK和CW波频域展示。非常直观可以看到BPSK信号主瓣较连续波信号更宽。
2.1 最小最大比法
首先在频域选择输出最大值及其左右邻近的各 4 个频点。选取 9 个频点是依据经验确定的。然后在这九个点中,计算最小振幅与最大振幅之比,将比值称为最小对最大比。如果信号是BPSK,则最小对最大比应该很大,因为频率区间都具有相对较高的值。
阈值的方法同第一部分所述。1.3.2部分提到,当S/N为-11.3dB时,检测概率大概为 90%。因此使用信噪比为-11.3dB连续波作为输入,并输入频率在141~1140随机,初始相位也随机的 2560 点数据。对输入数据加 Blackman 窗后做FFT。选输出最大值及其左右邻近的各 4 个频点,计算最小最大比。100000次运行结果如图 6 所示。
对输出用瑞利分布拟合,得到虚警概率为
1
0
−
4
10^{-4}
10−4 时阈值为 0.214,但由于瑞利分布不能很好的匹配数据,选取降序排列输出值,选择第10个值,并取 3 次平均,得到阈值为 0.243.易得阈值与输入信号的信噪比有关,当输入信噪比增大时,阈值将减小;反之,阈值将增大。
得到虚警概率为 1 0 − 4 10^{-4} 10−4 时阈值为 0.243 后就可以得到检测概率。图 7 给出了输入信噪比从 -12dB 变化至 -3dB 对应的检测概率。当信噪比为-8.9dB时,检测概率为 90%。通过观察可以得出,如果一个强连续波被检测到,它被判定为 BPSK 信号概率较小。如果一个弱连续波被检测到,则它被识别为 BPSK 信号概率较大,易产生误判。
2.2 特征值法
特征值可以被用于确定信号的数量和信号的调制类型。下面将介绍特征值用于区分 BPSK 信号和连续波信号。具有 N 个数据点的输入信号的 2 × 2 2\times2 2×2 相关矩阵可表示为
公式 (1.12)这里公式打不上去
式中,1表示第一延时,是个固定值;*表示复共轭。第二个元素k可以是小于N的任意正整数。特征值法不能用窗函数,因为加窗会使频谱出现扩展并导致发生检测方面的问题。由于输入数据为实数,一个信号将影响两个特征值。为确定输入是否包含第二个信号,需要得到三个特征值。
三个延迟是基于某个复信号选取的。该复信号由一个实信号通过一个 Hilbert变换器,得到 561 个数据点。首先必须选取相应的延迟。延迟的选取通过序列搜索来实现。对于一个 3 × 3 3\times3 3×3 矩阵,延迟可表示为 ( 1 , x , y ) (1,x,y) (1,x,y)。 3 × 3 3\times3 3×3 相关矩阵可表示为
公式 (1.13)
其中,1表示第一延时,是个固定值;*表示复共轭。
下面是实验过程:当输入信号为频率任意选取的无噪声BPSK信号。对于 561 个数据点, x x x 值的变换范围从 2 至 200, y y y 值的变换范围从 3 到 200,步进都为 1.每次步进得到 3 个特征值,共得到 39402 个输出。最大值出现在 x ≈ 45 , y ≈ 115 x \approx 45,y \approx 115 x≈45,y≈115 处,分别位于全部数据长度的 0.08 和 0.2。实验发现最大值具有一个稳定状态, x x x 和 y y y 的值并不是很关键,BPSK信号的输入频率也不是很关键。因此,将 x x x 和 y y y 的值选取为全部数据长度的 0.08 和 0.2。
当输入数据为 2560 点时,
x
x
x 和
y
y
y 的值分别为 205 和 512.
当输入为噪声时,最大特征值用于产生噪声,用高斯分布拟合,当虚警概率为
1
0
−
4
10^{-4}
10−4 时,阈值为 0.931.
当输入为-11.3dB的连续波时,虚警概率为
1
0
−
4
10^{-4}
10−4 时(书上这里翻译有问题),阈值为0.899。
可以得到如果检测阈值由噪声确定,当BPSK检测概率为90%时,需要的S/N大约为-6.6dB。如果用连续波确定阈值,达到90%检测概率需要S/N为-8.9dB。
通过对比图7、图8 并比较特征值法和最小最大比法,可以得出一些结论:
1.特征值法能够利用噪声产生阀值,而FFT法则不能。
2.检测概率为90%所需的信噪比是颇为不同的(分别为-8.9dB和-5.7dB)。当输入信噪比为-8.9dB时,特征值法看上去根本无法检测BPSK信号。其次,当输人信噪比为-5dB时,特征值法可以近乎100%检测到BPSK信号,而最小最大比法只能达到约97%的准确检测。
3.误检概率不同。对最小最大比法来说,误检取决于连续波信号强度。特征值法在只有噪声输入时有着非常低的虚警概率。
4.两者应用场景不同。对最小最大比法来说,必须通过FFT输出求和法来检测信号。于是该方法用于辨别信号是连续波信号还是BPSK信号。
特征值法可以通过最大特征值来检测信号是否存在,并通过最小特征值来辨别是连续波信号还是BPSK信号。
结论是这两种方法得到的结果是不同的,对两者很难做出有意义的对比。
2.3 使用连续帧输出的最小最大比法和特征值法
在2.1和2.2节中使用的是2560点的FFT或相关矩阵。本节则是仅使用上述 20 帧FFT输出的 20 个点。当检测到信号,即 20 帧FFT输出之和的 53 个频点之一大于阈值185,因此可以使用大于阈值185对应频点的 20 帧数据,后续处理都使用这 20 个点。
将这 20 个 FFT运算结果进行不加窗的 FFT 运算,这种运算成为二次FFT运算。找到二次FFT运算的最大值及其邻近的两个频点,在选中的三个频点中,将最小最大比用作阈值。使用-11.3dB连续波作为输入,重复100 000次。得到的100 000次结果很难和已知分布拟合,于是采用积分的方法,求得虚警概率为 1 0 − 4 10^{-4} 10−4 对应的阈值为 0.838.
特征值法的阈值可以通过同样的方式得到。使用-11.3dB连续波作为输入,重复100 000次,将 20 个点送入相关矩阵, 3 × 3 3\times3 3×3 矩阵用的延迟是 [ 1 , 2 , 4 ] [1,2,4] [1,2,4],这里用的是2.2讨论得到的 20 × 0.08 20\times0.08 20×0.08 和 20 × 0.2 20\times0.2 20×0.2 得到的。 2 × 2 2\times2 2×2 矩阵用的延迟是 [ 1 , 3 ] [1,3] [1,3],阈值都由最小特征值和最大特征值的比值决定。两者结果都难以使用已知的模型进行拟合,于是采用积分的方法,求得虚警概率为 1 0 − 4 10^{-4} 10−4 时 2 × 2 2\times2 2×2 相关矩阵对应的阈值为 0.551, 3 × 3 3\times3 3×3 相关矩阵对应的阈值为 0.310.表4列出了上述三种阈值
方法 | 阈值 | 比值 |
---|---|---|
FFT | 0.838 | 最小最大比 |
特征值2×2 | 0.551 | 最小特征值与最大特征值之比 |
特征值3×3 | 0.310 | 最小特征值与最大特征值之比 |
根据阈值可以求出检测概率,当输入频率在141~1140MHz且初始相位随机,输入信噪比为-11~-1dB的BPSK。实验结果显示,FFT法(最小最大比法)性能不好,检测概率在10%~45%之间变换;3延迟特征值法根本无法接近 100% 的检测概率。表 5 列出了在虚警概率为 1 0 − 4 10^{-4} 10−4 时检测概率为 90% 各方法所需的信噪比。可以看出2-延迟特征值法是最优的,同时它也是最适用接收机设计的方法。
方法 | 灵敏度信噪比 |
---|---|
长FFT运算 | -8.9 |
使用长数据的特征值法 | -5.9 |
2-延迟特征值法 | -10.5 |
3-延迟特征值法 | -8.0 |
3 确定BPSK信号的相变位置
3.1 相变模型
延续上文帧时长为 50 ns的设定。假设帧时间比预期的码元长度短。讨论两种情况。
第一种种情况:某个特定的帧内只有一次相变且在首帧和尾帧无相变发生。
第二种种情况:在相邻的两帧的每一帧内均出现一次相变。
这两种情况示意图分别如图9(a),图9(b)所示
这里将介绍三种检测相变的方法,分别是FFT法、特征值法和两帧比相法。由于FFT法和特征值法均测量第二个频率的能量,所以将它们称为第二频率法。当第二个频率的能量高时,将其分类为扩频信号。比相法使用两帧数据,测量相邻帧间的相位差。
3.2 输入一帧数据的FFT法
与第 2 节讨论的方法相似,通过比较BPSK信号和连续波信号的一帧数据的频谱来判断是发生相变的BPSK信号还是连续波信号(一帧内不发生相变的BPSK就是连续波信号,发生相变就找到了相变位置)。
对128点数据加 Blackman 窗,做FFT运算,选最大幅度频点及其两侧邻近的各4个频点。使用输入频率和初始相位相同的连续波进行比较,得到结果如图10所示。图10(a)显示连续波信号输出,图10(b)显示相变接近帧 1/4 位置,图10(c)显示相变接近帧 1/2 位置。
可以看出图10(a)和图10(b)差距较小,可以很容易把图10(a)和图10(c)区分开。从图10(a)和图10(b)看出,很难确定用于最小最大比法的频点的个数。(图中坦度相似)
若要用最小最大比法需要确定频点选取个数。讨论频点等于 7 或 9 两种情况,选取邻近最大输出的 7 个或 9 个频点,并计算最大最小比,记录所得这些比值的平均值和标准差,选取标准如式(1.14)
R
7
=
∣
m
7
c
−
m
7
b
∣
s
7
c
2
+
s
7
b
2
,
R
9
=
∣
m
9
c
−
m
9
b
∣
s
9
c
2
+
s
9
b
2
(1.14)
{R_7} = \frac{{\left| {{m_{7c}} - {m_{7b}}} \right|}}{{\sqrt {s_{7c}^2 + s_{7b}^2} }},{R_9} = \frac{{\left| {{m_{9c}} - {m_{9b}}} \right|}}{{\sqrt {s_{9c}^2 + s_{9b}^2} }} \tag{1.14}
R7=s7c2+s7b2∣m7c−m7b∣,R9=s9c2+s9b2∣m9c−m9b∣(1.14)式中,
m
i
c
m_{ic}
mic 表示连续波最小最大比均值,
m
i
b
m_{ib}
mib 表示BPSK信号最小最大比均值,
s
i
c
s_{ic}
sic 表示连续波最小最大比标准差,
s
i
b
s_{ib}
sib 表示BPSK信号最小最大比标准差。
在运行10000次时, R 7 R_7 R7 和 R 9 R_9 R9都接近 1。但是 R 7 R_7 R7 总是略大于 R 9 R_9 R9。因此使用 7 个频点更容易识别BPSK信号,所以这里使用 R 7 R_7 R7 。根据文献[1] 表 6.6 得一帧连续波信号可以在信噪比为-1.5dB时被检测到,因此由-1.5dB的连续波信号产生阈值,运行 3 回 100000去平均得到在虚警概率在 1 0 − 4 10^{-4} 10−4 时阈值为0.411.检测概率将和特征值法一起讨论。
3.3 使用一帧数据的特征值法检测相变
对于输入为实信号,需要第三个特征值来检测第二个信号。延迟值的选取同2.2节所讲,选取全部长度的 0.08 和 0.2 两个值。对于帧长128选取10和26.由噪声当作输入,运行100000次,将最大特征值进行升序排列,使用99990个值作为阈值,求得阈值为1.593。由于最大特征值被用作阈值(而不是最小和最大特征值的比值),不需要使用连续波信号来产生阈值。
这里没有说为什么用噪声和最大特征值就检测出相变所在的帧
检测相变时产生两帧数据,只在第二帧出现相变,在输入频率 141~1140MHZ之间随机产生,初始相位随机,在第二帧的相变位置也随机选取,在输入功率电平恒定的情况下,运行100000次,信噪比从 -3 dB 变换到 26 dB。每次处理两帧数据。如果在第一帧数据内检测到相变,则认为是误检,因为在该帧内不存在相变。第二帧数据内的检测用于计算检测概率。图11,12分别显示了FFT法和特征值法得到的检测概率。
图11可以看到,FFT法效果很差。图12可以看到基本没有误检,当信噪比为 14 dB时,检测概率大于 90%,但信噪比继续增大时,检测概率无法逼近 100%,因为漏检是相变在帧内的位置决定而非信号强度导致。
观察图13可以发现,最小最大值在帧中心位置较大,在两端较小,即特征值法在相变发生在帧中心位置性能好,在相变发生在靠近帧两端位置性能较差。
3.4 使用两帧数据的特征值法检测相变
图 12 可以得出一帧的特征值法距离100%还是很有差距的,于是将一帧拓展为两帧
在本节的研究中,产生四帧数据,并且相变在第三顿内随机出现。这里将进行三组测试。第一组数据包括帧1和帧2.由于这两帧没有相变,所以将其用于误检测试。第二组和第三组数据分别包括帧2和帧3,以及帧3和帧4。如果检测发生在第二组或第三组数据,或者在这两组数据均发生,则认为检测到相变。
阈值的确定同3.3所讲相似。使用噪声做输入,延迟选取20和52,得到最大特征值。运行 100 000次,升序排列,将第 99 990个特征值用作阈值,得到阈值为1.29。虚警概率为 1 0 − 4 10^{-4} 10−4.得到误检和检测概率如图14所示。可以看到没有误检,当信噪比为6dB时,检测概率到 90%,更高信噪比可接近 100%。
这里有个问题:
1.没解释为什么用噪声能检测出相变所在的帧
3.5 定位相变的比相法
在本节的研究中,为了产生三个相位差,使用了四帧数据。相变在第三帧数据内引入,且其位置接近帧的中心。这样一来,帧1和帧2这组数据内没有相变,而帧2和帧3以及帧3和帧4这两组数据内存在相变。输入信噪比为100dB,频点在141~1140MHz范围内内随机选取,初始相位随机。每帧数据与 Blackman 窗相乘,计算FFT。选取在第一帧内具有最大输出的频点。将来自四帧数据的此频点处的相位依次表示为
θ
1
\theta_1
θ1 、
θ
2
\theta_2
θ2 、
θ
3
\theta_3
θ3 和
θ
4
\theta_4
θ4 。需要的相位差和二次相差可表示为
θ
21
=
θ
2
−
θ
1
θ
32
=
θ
3
−
θ
2
θ
43
=
θ
4
−
θ
3
Δ
θ
21
=
θ
32
−
θ
21
Δ
θ
32
=
θ
43
−
θ
32
(1.15)
\begin{array}{l} {\theta _{21}} = {\theta _2} - {\theta _1}\\ {\theta _{32}} = {\theta _3} - {\theta _2}\\ {\theta _{43}} = {\theta _4} - {\theta _3}\\ \Delta {\theta _{21}} = {\theta _{32}} - {\theta _{21}}\\ \Delta {\theta _{32}} = {\theta _{43}} - {\theta _{32}} \end{array} \tag{1.15}
θ21=θ2−θ1θ32=θ3−θ2θ43=θ4−θ3Δθ21=θ32−θ21Δθ32=θ43−θ32(1.15)
这里将
Δ
θ
21
\Delta {\theta _{21}}
Δθ21 和
Δ
θ
32
\Delta {\theta _{32}}
Δθ32 称为二次相差。所以相位差
θ
21
{\theta _{21}}
θ21可视为由连续波信号得到,并可用来获取精确频率。如果相变出现在帧3和帧4的分界处,则同样可认为
θ
32
{\theta _{32}}
θ32是由连续波信号得到的,且
θ
43
{\theta _{43}}
θ43靠近他们的分界处具有相变。当相变出现在帧3和帧4的分界处,
Δ
θ
21
\Delta {\theta _{21}}
Δθ21 接近零,
Δ
θ
32
\Delta {\theta _{32}}
Δθ32 接近
±
π
\pm\pi
±π rad,如图15(a)和图15(b)所示,这些结果由100次运行得到,并且符合预期。
图15(a)(b)(c )(d)依次为,
图15( a ),
Δ
θ
21
\Delta {\theta _{21}}
Δθ21相变接近帧3和帧4的分界
图15( b ),
Δ
θ
32
\Delta {\theta _{32}}
Δθ32相变接近帧3和帧4的分界
图15( c ),
Δ
θ
21
\Delta {\theta _{21}}
Δθ21相变接近帧3和的中心
图15( d ),
Δ
θ
32
\Delta {\theta _{32}}
Δθ32相变接近帧3和的中心
两帧之间在具体频率处的相位差
所得结果可做如下解释。输入是连续波信号时,相邻两帧之间在具体频率处的相位差是恒定的。它们之间的二次相差接近于零。如果在相邻两帧之间存在相变,那么它们的二次相差接近 ± π \pm\pi ±π rad。即可通过连续检测二次相差来判断相变发生所在帧。
观察图15(c)和图15(d)可知道当相变接近帧中心时,比相法检测效果较差,这正好可以和一帧的特征值法相反,两种方法互为补充。
下一步确定检测概率。使用5帧数据来产生四个相位差和三次二次相差。在第一帧内,定位具有最大幅度的信号频点。并得到五帧在此频点出的相位 θ 1 \theta_1 θ1 、 θ 2 \theta_2 θ2 、 θ 3 \theta_3 θ3 、 θ 4 \theta_4 θ4 和 θ 5 \theta_5 θ5 。得到四个相位差和三个二次相差。检测阈值设置在 π / 2 ∼ 3 π / 2 \pi /2 \sim 3\pi /2 π/2∼3π/2 范围内。如果二次相差落入阈值内,则表示检测到相变。运行1000次,得到结果如图16。
图16(b)可以看出检测概率在94%~97%左右,无法逼近100%,因为比相法在相变接近帧中心时不灵敏。
3.6 在相邻帧内存在两次相变的情况
通过特征值法和比相法的联合使用可以取得很好的检测性能了,但如果相变出现在相邻两帧内且位于帧的边界处,如图17(a)所示,那么特征值法可能无法或者只能检测到其中一个相变。比想法应该能在第一次和第二次测试中检测到全部相变,但是无法在第三次测试中检测出相变。
对于图17(a)所描述的场景还需如下逻辑判断:
- 如果特征值方法在第1、2和3帧中没有检测到相变,但相位比较方法在测试1和2中检测到相变,则可以假设在第1和2帧中发生了两个相变。这是正确答案。
- 如果特征值方法在第1帧或第3帧中检测到相变,而比相法在测试1和2中检测到相变,则可以假设在第1帧和第2帧(在第1帧检出时)或第2帧和第3帧(在第3帧检出时)中存在两个相变。这也是正确的。
- 如果特征值法在帧2中检测到相变,而比相法在帧1和帧2中检测到相变,则认为只有在帧2中有一个相变。在此输出条件下,将漏掉一个相变。如果相变被两帧分开,如图17(b)所示,则特征值法可能检测不到,而比相法应该检测到。可能会出现情况,并可能作出下列决定。
- 如果特征值方法没有检测到任何相变,但测试1和3检测到相变,则将指定给帧1和帧3发生相变,这是正确答案。如果比相法在所有三个测试都检测到相变,则相变也分配给帧1和帧3。测试2的结果将被忽略。
- 如果特征值方法检测到四帧中的任何一帧中的相变,则相位比较方法包括该帧的结果将被忽略。测试1和3将检测相变,但测试2可以是任何一种情况。将会发生以下四种情况:
(1)特征值检测在帧1中,测试1被忽略,测试3将识别帧3中独立于测试2结果的相变。结果是帧1和帧3。
(2)特征值检测在帧2中,测试1和2将被忽略,测试3将识别帧3。结果是帧2和帧3。
(3)特征值检测在帧3中,测试2和3将被忽略,测试1将识别帧1。结果是帧1和帧3。
(4)特征值检测在帧4中,测试3将被忽略,测试1将独立于测试2的结果识别帧1。结果是帧1和帧4。
所有输出都被认为是正确的。因此,当两个相变被两帧分隔开时,联合使用特征值法和比相法可以得到正确的结果。唯一可能的问题发生在第三种情况下,即帧时间和码元长度大致相等。消除这一问题的一种方法是增加采样频率(或缩短帧时间),并使最小码元长度大于帧时间的 1 倍,比如等于 1.5 倍帧时间。
4 参考文献
[1] Tsui J. Special Design Topics in Digital Wideband Receivers. Boston: Artech House; 2010.
[2] Zhang QT, Wong KM. ‘Information theoretic criteria for the determination of the number of signals in spatially correlated noise’, IEEE Transactions on Signal Processing 1993;41(4):1652–1663.
[3] Zeng Y, Koh CL, Liang Y-C. ‘Maximum Eigenvalue Detection: Theory and Application’. Proceedings of 2008 IEEE International Conference on Communications. New York: IEEE; 2008:4160–4164.