贝叶斯学习(Bayesian Learning)基础篇

本文介绍了贝叶斯统计的核心概念,包括先验概率、后验概率、似然度和边际概率,以及它们在实际问题中的应用,如垃圾邮件过滤。通过贝叶斯定理,可以更新我们对事件的认知,做出更准确的预测和决策。此外,还讨论了贝叶斯学习和最大后验概率假设在模型选择中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本文将基于UoA的课件介绍机器学习中的贝叶斯。

涉及的英语比较基础,所以为节省时间(不是full-time,还有其他三门课程,所以时间还是比较紧的),只在我以为需要解释的地方进行解释。

此文不用于任何商业用途,仅仅是个人学习过程笔记以及心得体会,侵必删。

Motivation and Introduction

Think about Spam Filtering.

Lead in, 比较简单,不多说了。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述 P ( Y ) P(Y) P(Y)是事件Y的先验概率,即在考虑观测数据之前我们对事件Y发生的概率的估计。 P ( X ∣ Y ) P(X|Y) P(XY)是在事件Y发生的条件下观测到数据X的概率,称为事件Y的似然度。 P ( X ) P(X) P(X)是数据X发生的边际概率,也称为证据。

贝叶斯公式的含义可以用以下步骤概括:

  1. 先根据我们的先验知识( P ( Y ) P(Y) P(Y))对事件Y的发生概率进行估计。

  2. 观测到数据X之后,根据我们对数据的了解,计算出在事件Y发生的条件下,数据X出现的概率( P ( X ∣ Y ) P(X|Y) P(XY))。

  3. 通过计算边缘概率 P ( X ) P(X) P(X),将 P ( Y ) P(Y) P(Y) P ( X ∣ Y ) P(X|Y) P(XY)结合起来,计算出事件A在观测到数据B之后的后验概率 P ( Y ∣ X ) P(Y|X) P(YX)

  4. 根据计算出的后验概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nine_mink

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值