1. 函数的返回值
1.1 返回值就是函数执⾏以后返回的结果。
1.2 通过return来指定函数的返回值。
1.3 return后⾯可以跟任意对象,返回值甚⾄可以是⼀个函数。
2. ⽂档字符串
2.1 help()是Python中内置函数,通过help()函数可以查询Python中函数的⽤法。
2.2 在定义函数时,可以在函数内部编写⽂档字符串,⽂档字符串就是对函数的说明。
3. 函数的作⽤域
3.1 作⽤域(scope)
3.2 作⽤域指的是变量⽣效的区域。
3.3 在Python中⼀共有两种作⽤域。
全局作⽤域
全局作⽤域在程序执⾏时创建,在程序执⾏结束时销毁
所有函数以外的区域都是全局作⽤域
在全局作⽤域中定义的变量,都是全局变量,全局变量可以在程序的任意
位置进⾏访问
函数作⽤域
函数作⽤域在函数调⽤时创建,在调⽤结束时销毁
函数每调⽤⼀次就会产⽣⼀个新的函数作⽤域
在函数作⽤域中定义的变量,都是局部变量,它只能在函数内部被访问
4. 命名空间
4.1 命名空间实际上就是⼀个字典,是⼀个专⻔⽤来存储变量的字典。
4.1 locals()⽤来获取当前作⽤域的命名空间。
4.1 如果在全局作⽤域中调⽤locals()则获取全局命名空间,如果在函数作⽤域中。
4.1 调⽤locals()则获取函数命名空间。
4.1 返回值是⼀个字典。
5. 递归函数
5.1 递归是解决问题的⼀种⽅式,它的整体思想,是将⼀个⼤问题分解为⼀个个的⼩问题,直到问题⽆法分解时,在去解决问题。
求N次幂的程序:
n=10
for i in range(1,10): # 1-9的范围。
n * =i # n = n * i
print(n,i)
#结果
#10 1 第一次初始n=10,i=1,最后n=101=10
#20 2 第二次初始n=10,i=2,最后n=102=20
#60 3 第三次初始n=20,i=3,最后n=20*3=60
#240 4 以此类推。
#1200 5
#7200 6
#50400 7
#403200 8
#3628800 9
例子2:
def fn(n):
#参数n代表要求阶乘的数字。
#定义一个变量保持结果。
r=n
for i in range(1,n): #i在1和n-1之间遍历。
r *= i # r = r * i
return r #函数返回r值。如果没有这句,最后print执行结果是:None
print(fn(10))
结果:
3628800
递归简单理解就是引用自己。
递归式函数,在函数中调用自己。
递归是一种解决问题的思想,他和循环很像。
他的整体思想是把一个大的思想分解为一个小的问题,直到无法分解时,再去解决问题。
5.2 递归式函数有2个条件。
1)基线条件 问题可以被分解为最⼩问题,当满⾜基线条件时,递归就不执⾏了。
2)递归条件 可以将问题继续分解的条件。
例子:用递归解决阶乘问题:
def fn2(n):
#基线条件。
#递归条件。
#10!=10 * 9 !
#9!=9 * 8!
#以此类推…
#1!=1
#因此,基线条件为:
if n == 1:
return 1
#递归条件:10!=109!
return nfn2(n-1)
print(fn2(10))
结果:
3628800
例子:
#定义一个函数,为任意数做任意幂运算
def fn1(n,i): #参数n代表任意数字,i代表给n的任意次幂。5^3 (n是5,i是3)
#基线条件:
#10^ 5=10 * 10 ^ 4
#10 ^ 4=10 * 10 ^ 3
#10 ^ 3=10 * 10 ^ 2
#10 ^ 2=10 * 10 ^ 1
#10 ^1=10
if i == 1:
return n
#递归条件:10 ^ 5=10 * 10 ^ 4
return n*fn1(n,i-1) #i-1 对应10^4
print(fn1(8,8))
例子:测试是否是回文
def fn2(s):
#参数s要检查的字符串是否是回文字符串
#先检查“abcdefgfedcba”的两端是否字母一致,再检查“bcdefgfedcb”两端字母是否一致,再检查“cdefgfedc”两端字母是否一致,… 最后是“g”。
#基线条件
if len(s)<2: #当字符串s的长度小于2的时候,即长度只剩下1,或者为0。假设s=‘aa’,print(s[1,-1]),输出的是空值。
return True #返回ture
elif s[0] !=s[-1]: 当第一个数字和最后一个数字不同的时候。
return False #返回false
#递归条件:bcdcb
return fn2(s[1:-1])
print(fn2(‘abcdcba’))