快速排序算法
快速排序是一种常用的排序算法,通过选择一个基准值,将数组分为左右两部分,然后对左右两部分分别进行递归排序,最终得到一个有序数组。
时间复杂度:
- 最好情况下,每次选择的基准值都能均匀地将数组分为两部分,此时时间复杂度为O(nlogn)。
- 最坏情况下,每次选择的基准值都是当前最大或最小的元素,此时时间复杂度为O(n^2)。
- 平均情况下,时间复杂度为O(nlogn)。
空间复杂度: 快速排序的空间复杂度主要取决于递归调用的栈空间,因此空间复杂度为O(logn)。
代码注释:
- 如果数组长度小于2,则直接返回数组本身。
- 调用快速排序函数,传入数组指针、左边界和右边界。
- 快速排序函数实现了快速排序的递归过程。
- partition函数采用三指针法来进行分区操作。
- 随机选择一个基准值curr。
- 初始化指针index和leftIndex为左边界。
- 进入循环,比较当前元素与基准值的大小关系,并根据大小进行元素交换和指针移动。
- 返回最终的左指针leftIndex和右指针rightIndex,作为下一次递归排序的边界。
- getRandomIntInclusive函数用于生成一个在[min, max]范围内的随机整数。
func main() {
nums:=[]int{2,6,3,4,7,1,9,13,8}
ansArr:=sortArray(nums)
fmt.Println(ansArr)
}
func sortArray(nums []int) []int {
if len(nums) < 2 {
return nums
}
quickSort(&nums, 0, len(nums)-1) // 调用快速排序算法对数组进行排序
return nums
}
func quickSort(nums *[]int, left int, right int) {
if left >= right {
return
}
leftIndex, rightIndex := partition(nums, left, right) // 划分数组并获取左右边界索引
quickSort(nums, left, leftIndex-1) // 对左子数组进行递归快速排序
quickSort(nums, rightIndex, right) // 对右子数组进行递归快速排序
}
func partition(nums *[]int, leftIndex int, rightIndex int) (int, int) {
// 三指针法
curr := (*nums)[getRandomIntInclusive(leftIndex, rightIndex)] // 随机选择基准元素
index := leftIndex // 当前索引
for index <= rightIndex {
if (*nums)[index] < curr { // 如果当前元素小于基准元素
(*nums)[leftIndex], (*nums)[index] = (*nums)[index], (*nums)[leftIndex] // 交换当前元素与左边界元素
leftIndex++ // 左边界索引右移
index++ // 当前索引右移
continue // 进入下一次循环
}
if (*nums)[index] == curr { // 如果当前元素等于基准元素
index++ // 当前索引右移
continue // 进入下一次循环
}
if (*nums)[index] > curr { // 如果当前元素大于基准元素
(*nums)[rightIndex], (*nums)[index] = (*nums)[index], (*nums)[rightIndex] // 交换当前元素与右边界元素
rightIndex-- // 右边界索引左移
}
}
return leftIndex, rightIndex // 返回左右边界索引
}
func getRandomIntInclusive(min int, max int) int {
return min + rand.Intn(max-min+1) // 生成指定范围内的随机整数
}