1 之前的人工智能学习(监督学习 supervised learning)
相信所有人在学习人工智能的时候,都经过了几个阶段,从一开始简单的数据处理,到机器学习简单算法,然后再到深度学习。在长时间的学习积累后,大家可能会有一种感受,就算法本身来说,并不是越复杂就一定越好,并不是说解决一个问题时,你运用到了神经网络的知识,就一定要比一般的机器学习高端,最适合的才是最好的。
另一方面,在过去的学习过程中,可能不少人都有这样一种感受,觉得我们做的事情都有一个大前提,那就是我们事先已经知道了答案,比方说分类问题和回归问题,我们事先已经知道了猫是什么样的,狗是什么样的,然后我们就给数据创建训练集,测试集,设定好标签,通过我们现有的认知来训练计算机,像这样的机器学习方式就叫做监督学习。
监督学习最大的好处就是,一切都是已知的,通过这些模型的建立,我们就能非常容易地对事物进行判断和预测。但是这需要投入大量的人力进行前期的数据处理和标签制作,在这个过程中,很容易掺杂大量的感情因素,也可能会出现人的工作疏忽,导致送给机器的数据或数据标签