1. 题目
编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。
思路
1.
首先初始化一个指向左下角的指针。如果当前指向的值大于目标值,则可以 “向上” (row–)移动一行。如果当前指向的值小于目标值,则可以向右(col++)移动一列。找到返回True,否则返回False
如何选出发点”的补充:(来自官方题解评论)
选左上角,往右走和往下走都增大,不能选
选右下角,往上走和往左走都减小,不能选
选左下角,往右走增大,往上走减小,可选
选右上角,往下走增大,往左走减小,可选
class Solution:
def searchMatrix(self, matrix, target):
row = len(matrix)-1
col = 0
while row >= 0 or col <= len(matrix[0])-1:
if matrix[row][col] > target:
row -= 1
elif matrix[row][col] < target:
col += 1
else:
return True
return False
2. 暴力法
class Solution:
def searchMatrix(self, matrix, target):
"""
:type matrix: List[List[int]]
:type target: int
:rtype: bool
"""
for line in matrix:
if target in line:
return True
return False
3. 二分法
对每行进行二分查找,不满足直接下一行
class Solution:
def searchMatrix(self, matrix, target):
if not matrix:
return False
row = len(matrix) - 1
col = len(matrix[0])-1
for line in matrix:
if line == [] or line[0] > target or line[col] < target:
continue
if self.searchBinary(line, target) == 1:
return True
return False
def searchBinary(self,num, target):
left = 0
right = len(num) - 1
while left <= right:
mid = left + (right - left) // 2
if num[mid] == target:
return 1
elif num[mid] < target:
left = mid + 1
else:
right = mid -1
if num[left] == target:
return 1
return -1