1.题目
给定两个整数 n 和 k,你需要实现一个数组,这个数组包含从 1 到 n 的 n 个不同整数,同时满足以下条件:
① 如果这个数组是 [a1, a2, a3, … , an] ,那么数组 [|a1 - a2|, |a2 - a3|, |a3 - a4|, … , |an-1 - an|] 中应该有且仅有 k 个不同整数;.
② 如果存在多种答案,你只需实现并返回其中任意一种.
示例 1:
输入: n = 3, k = 1
输出: [1, 2, 3]
解释: [1, 2, 3] 包含 3 个范围在 1-3 的不同整数, 并且 [1, 1] 中有且仅有 1 个不同整数 : 1
示例 2:
输入: n = 3, k = 2
输出: [1, 3, 2]
解释: [1, 3, 2] 包含 3 个范围在 1-3 的不同整数, 并且 [2, 1] 中有且仅有 2 个不同整数: 1 和 2
2.思路
找规律:
假设 n = 5,
相减之后有, k 个不同整数, 那么当
k = 1 1 2 3 4 5
k = 2 1 5 4 3 2
k = 3 1 5 2 3 4
...
保留前k个数,翻转后n-k个数,每次操作保留数组顺序。
class Solution:
def constructArray(self, n: int, k: int) -> List[int]:
num_list = [ i for i in range(1, n+1)] # 1 2 3 4
if k == 1: return num_list
for count in range(1,k):
i = count
j = n-1
while i < j:
num_list[i], num_list[j] = num_list[j], num_list[i]
i += 1
j -= 1
return num_list