原始部落byteland中的居民们为了争抢有限的资源,经常发生冲突。几乎每个居民都有它的仇敌。部落酋长为了组织一支保卫部落的队伍,希望从部落的居民中选出最多的居民入伍,并保证队伍中任何两个人都不是仇敌。(时间限制10000 ms)
输入格式:
第一行两个正整数n和m,表示byteland部落中有n个居民,居民间有m个仇敌关系, 0<n<200, 0<m<6000。居民编号为1,2,…,n。接下来输入m行中,每行正整数u和v,表示居民u和居民v是仇敌。
7 10
1 2
1 4
2 4
2 3
2 5
2 6
3 5
3 6
4 5
5 6
输出格式:
输出部落卫队最佳组建方案中包含的居民人数。之后逐个输出卫队组成xi, 1<=i<=n, xi=0表示居民i不在卫队中,xi=1表示居民i在卫队中。
3
1 0 1 0 0 0 1
这是一道我的作业题。
作为一名解题人,我们需要先分析时间限制再来决定我们的算法。一看时间10s,再看一眼数据范围n<200,m<6000。我马上确定了这是一道暴力算法可以解决的题目(如bfs,dfs,暴力枚举等),因为一般OJ的虚拟机1s可以做10^7~10^8次计算。我们的数据范围太小了。
再来看看题目。要求我们寻找一个最多人数的队伍,每一位成员是否包含在里面用0/1表示。
既然我们可以用最暴力的算法,我的想法是成员从左到右逐个遍历一遍,比如到了这个 i th成员,我们再for()循环一遍前面加入队伍的敌对关系,如果有