首先介绍下最大团问题:
问题描述:给一个无向图G=(V,E) ,V是顶点集合,E是边集合。然后在这顶点集合中选取几个顶点,这几
个顶点任意两个之间都有边在E中。求最多可以选取的顶点个数。这几个顶点就构成一个最大团。
注:最大团可能不唯一。
问题求解思想:这个问题的本质是一个子集选取问题,就是有集合包括n个元素{1,2,…,n}选取其中一个子
集,这个子集满足某种性质(对于最大团问题,就是任意两个顶点之间有边),求这个子集的最大元素数。
每个元素(对应顶点编号)有2种选择,加入或不加入。所以子集个数为2^n个。
这里用回溯的思想求解。
回溯的概念如是理解:在包含所有问题的所有解的解空间树中,从根节点进行深度优先搜索,搜索空间树中
的任一节点的时候,首先判断是否可能包含最优解,如果不包含,就跳过改节点为根的子树的搜索,向其上
一层祖先节点回溯。入包含,则进入该子树,进行深度优先搜索。
部落卫队问题描述:
原始部落中的居民为了争夺资源,常发生冲突。几乎每个居民都有仇敌。酋长为了组织一个部落卫队,希望
从部落居民中选出最多的居民入伍,并保证队伍中任何2个人都不是仇敌。
编程任务:
根据给定的居民间的仇敌关系,编程计算出部落卫队的最佳方案。
数据输入:
第1行2个整数n,m表示部落中居民个数,居民中有m个仇敌关系。居民编号1,2,…,n。接下来m行,每行2