#include<iostream>
#include<string>
#include<string.h>
#include<cstdio>
#include<algorithm>
using namespace std;
int main()
{
int n,i,j;
int Num[20];
cout<<"请输入方阵维数:";
cin>>n;
for(i=1;i<=2*n;i++) //给数组赋初始值
{
if(i > n)
{
Num[i-1]=i-n;
}
else Num[i-1]=i;
}
for (i = 0;i < n;i++) //外循环保证输出n行
{
for (j = i;j < n+i;j++) //内循环输出一行的每个数字
{
cout<<Num[j]<<'\t';
if(j==n+i-1)cout<<'\n';
}
}
return 0;
}
拉丁方阵:
据说普鲁士的腓特列大帝曾组成一支仪仗队,仪仗队共有36名军官,来自6支部队,每支部队中,上校、中校、少校、上尉、中尉、少尉各一名。他希望这36名军官排成6×6的方阵,方阵的每一行,每一列的6名军官来自不同的部队并且军衔各不相同。令他恼火的是,无论怎么绞尽脑汁也排不成。
后来,他去求教瑞士著名的大数学家欧拉。欧拉发现这是一个不可能完成的任务。 来自n个部队的n种军衔的n×n名军官,如果能排成一个正方形,每一行,每一列的n名军官来自不同的部队并且军衔各不相同,那么就称这个方阵叫正交拉丁方阵。欧拉猜测在 n=2,6,10,14,18,… 时,正交拉丁方阵不存在。然而到了上世纪60年代,人们用计算机造出了n=10的正交拉丁方阵,推翻了欧拉的猜测。现在已经知道,除了n=2,6以外,其余的正交拉丁方阵都存在,而且有多种构造的方法。正交拉丁方阵每个元素有2个属性。
Aa | Bc | Cb |
Bb | Ca | Ac |
Cc | Ab | Ba |
若只有一个属性则不是正交拉丁方阵。