吴恩达《机器学习》第二周学习笔记

四:多变量线性回归(Linear Regression with Multiple Variables)

4.1 多维特征

4.2 多变量梯度下降 

4.3梯度下降法实践1-特征缩放

特征缩放:使用一个方法,将梯度下降的速度变快,让梯度下降收敛所需的循环次数更少。

 

 

 

4.4梯度下降法实践2-学习率 

 

4.5特征和多项式回归

线性回归并不适用于所有数据,有时我们需要曲线来适用我们的数据。

 

 

4.6正规方程  

 

4.7正规方程及比不可逆性

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值