Douglas-Peucker算法

Douglas-Peucker算法(该算法名字够吓人,其实思想很简单)

在数字化时,要对曲线进行采样,即在曲线上取有限个点,将其变为折线,并且能够在一定程度

上保持原有的形状。

经典的Douglas-Peucker算法步骤如下(如下图):

(1)在曲线首尾两点A,B之间连接一条直线AB,该直线为曲线的弦;

(2)得到曲线上离该直线段距离最大的点C,计算其与AB的距离d;

(3)比较该距离与预先给定的阈值threshold的大小,如果小于threshold,则该直线段作为曲线的近似,该段曲线处理完毕。

(4)如果距离大于阈值,则用C将曲线分为两段AC和BC,并分别对两段取信进行1~3的处理。

(5)当所有曲线都处理完毕时,依次连接各个分割点形成的折线,即可以作为曲线的近似。

在这里插入图片描述
这个算法要因地制宜,用于图像处理的contour,提取转折点时,要做两点的改进:

(1)因为这个算法的头尾点肯定是存在的,但是contour的头尾点是相邻像素,因此,最后这个点也要设置为false。

(2)因为这个算法是根据点与弦的距离是否超过threshold,因此,还要检测是否存在同一线段上的多个点,如下图:点1 不是转折点,要移出,还要再做处理。

在这里插入图片描述
代码实现:

递归方式实现的Douglas–Peucker算法用于GPS轨迹压缩,参考的原文找不到了,把它封装成一个类。

import math

class Point(object):
    def __init__(self, id, x, y):
        self.id = id
        self.x = x
        self.y = y

class DPCompress(object):
    def __init__(self, pointList, tolerance):
        self.Compressed = list()
        self.pointList = pointList
        self.tolerance = tolerance
        self.runDP(pointList, tolerance)

    def calc_height(self, point1, point2, point):
        """
        计算point到[point1, point2所在直线]的距离
        点到直线距离:
        A = point2.y - point1.y;
        B = point1.x - point2.x;
        C = point2.x * point1.y - point1.x * point2.y
        Dist = abs((A * point3.X + B * point3.Y + C) / sqrt(A * A + B * B))
        """
        
        # tops2 = abs(point1.x * point2.y + point2.x * point.y
        #                 + point.x * point1.y - point2.x * point1.y - point.x *
        #                 point2.y - point1.x * point.y)
        tops = abs(point1.x * point.y + point2.x * point1.y + point.x * point2.y
                - point1.x * point2.y - point2.x * point.y - point.x * point1.y
                )

        bottom = math.sqrt(
            math.pow(point2.y - point1.y, 2) + math.pow(point2.x - point1.x, 2)
        )

        height = 100 * tops / bottom
        return height

    def DouglasPeucker(self, pointList, firsPoint, lastPoint, tolerance):
        """
        计算通过的内容
        DP算法
        :param pointList: 点列表
        :param firsPoint: 第一个点
        :param lastPoint: 最后一个点
        :param tolerance: 容差
        :return:
        """
        maxDistance = 0.0
        indexFarthest = 0
        for i in range(firsPoint, lastPoint):
            distance = self.calc_height(pointList[firsPoint], pointList[lastPoint], pointList[i])
            if (distance > maxDistance):
                maxDistance = distance
                indexFarthest = i
    #    print('max_dis=', maxDistance)

        if maxDistance > tolerance and indexFarthest != 0:
            self.Compressed.append(pointList[indexFarthest])
            self.DouglasPeucker(pointList, firsPoint, indexFarthest, tolerance)
            self.DouglasPeucker(pointList, indexFarthest, lastPoint, tolerance)

    def runDP(self, pointList, tolerance):
        """
        主要运行结果
        :param pointList: Point 列表
        :param tolerance: 值越小,压缩后剩余的越多
        :return:
        """
        if pointList == None or pointList.__len__() < 3:
            return pointList

        firspoint = 0
        lastPoint = len(pointList) - 1

        self.Compressed.append(pointList[firspoint])
        self.Compressed.append(pointList[lastPoint])

        while (pointList[firspoint] == pointList[lastPoint]):
            lastPoint -= 1
        self.DouglasPeucker(pointList, firspoint, lastPoint, tolerance)

    def getCompressed(self):
        self.Compressed.sort(key=lambda point: int(point.id))
        return self.Compressed


该类的使用方法

import pandas as pd
import numpy as np
import collections

from DPCompress import Point,DPCompress

def load_data(file_path):
    columns=['rid','car_id','lon','lat']
    df = pd.read_csv(file_path, header=None, names=columns)
    df_data = df.loc[df['lon']!=np.nan].reset_index().drop(['index'],axis=1)
    
    car_to_points = collections.defaultdict(list)
    for i, row in df_data.iterrows():
        row_id = row['rid']
        car_id = row['car_id']
        lon = float(row['lon'])
        lat = float(row['lat'])
        pt = Point(row_id, round(lon, 6), round(lat, 6)) # 构造Point对象
        car_to_points[car_id].append(pt)
    return car_to_points
    
if __name__ == '__main__':
    data_file='data/trajectory.csv'
    output_file='data/compressed.csv'
    car_points = load_data(data_file)
    # print(car_points.keys())
    with open(output_file, 'w', encoding='utf-8') as fwriter:
        for car, PointList in car_points.items():
            points = []
            dp = DPCompress(PointList, 3.5)
            points = dp.getCompressed()
            for p in points:
                line = "{},{},{}".format(car, p.x, p.y)
                fwriter.write(line)
                fwriter.write("\n")
            print(car, len(PointList), '-->', len(points))

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪子私房菜

给小强一点爱心呗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值