自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(300)
  • 资源 (11)
  • 收藏
  • 关注

原创 使用conda创建新的虚拟环境之后,通过pip install 在当前环境下安装一些package,但是显示已经安装。执行pip list发现显示的是base环境中的packages。

如果是在base环境下执行了 conda activate env,那么执行conda info 会显示。解决方案:先conda deactivate 再 conda activate env重新激活即可。level=2,表明嵌套了一层。

2024-06-22 16:01:52 231

原创 论文复现---USAD

链接:https://pan.baidu.com/s/1LbJvUzT-AFYH5cDHyzOI3A。提供main.py(作者自己根据jupyter文件整理得到)全套代码分享,包含数据集等,配好环境,没有问题即可运行。下载CSV文件到input文件夹下。--来自百度网盘超级会员V6的分享。其余环境默认安装即可。

2024-06-20 15:46:00 352

原创 论文合集整理推荐2024.6.20

原创 小王搬运工。

2024-06-20 11:09:40 308

原创 USAD: 多元时间序列的无监督异常检测

时间序列:论文首先定义了单变量和多变量时间序列的概念,区分了它们在数据点上的不同。异常检测任务:描述了在给定时间序列数据集的情况下,如何通过训练数据来识别异常点。

2024-06-20 11:00:36 302

原创 环境报错:undefined symbol: iJIT_IsProfilingActive

5. **随机数生成**:提供高质量的随机数生成器,支持多种分布(如正态分布、均匀分布等),适用于蒙特卡洛模拟、统计分析等领域。3. **矢量数学库(VML)**:包括常用的数学函数(如指数、对数、三角函数等)的高效实现,可以对矢量进行操作。2. **快速傅里叶变换(FFT)**:提供高效的FFT计算,用于信号处理、图像处理等领域。4. **稀疏矩阵运算**:提供稀疏矩阵的存储、变换和求解功能,适用于大规模稀疏矩阵的计算。

2024-06-19 21:52:15 255

原创 精品壁纸分享

链接:https://pan.baidu.com/s/1hgxeKLilnZvEnlMFYv0Ucg。--来自百度网盘超级会员V6的分享。

2024-06-11 16:20:31 91

原创 论文复现---BeatGAN

这个地方按照这个安装我尝试了很多次都没安装成功,如果配置过国内镜像源如清华源,其中是没有老版本pytorch,清华源最早支持gpu的pytorch版本是1.5.0。而且torchvision的0.2.1这个版本即使是在pytorch自己的仓库都找不到,只能找到0.2.0,更别说在国内的镜像源中了。然后找到torchvision,可以发现没有torch0.2.1,只有0.2.0,这里按照0.2.0安装也没有问题。全套代码分享,包含数据集等,配好环境,没有问题即可运行。问题3:GPU无法使用。

2024-06-11 10:05:17 421

原创 社区服务支持

在这里,每一位成员都是我们宝贵的财富,每一次分享都是我们共同成长的见证。我们诚挚地邀请您加入我们的专业社区——时序数据挖掘社区,一个专注于时序数据分析、挖掘与应用的交流平台。交流讨论:与行业专家进行深入讨论,共同探讨时序数据的奥秘。问题求助:与同行交流,解决您在时序数据处理中遇到的难题。学习打卡:记录您的学习进度,与志同道合的朋友一起成长。技术分享:获取最新的时序数据分析技术与方法。🤝 加入我们,一起探索时序数据的无限可能!- 时序数据分析的实战技巧和经验分享。- 一个充满活力和知识共享的社区环境。

2024-06-07 19:34:24 173

原创 BeatGAN:使用对抗生成时间序列的异常心律检测

BeatGAN作为一种创新的无监督异常心律检测算法,通过结合对抗生成网络的正则化能力和自编码器的重建特性,在心电图(ECG)数据上实现了接近0.95 AUC的高准确度,并且具有每心跳2.6毫秒的快速推理速度。此外,其快速推理的特点为集成到实时监测系统中提供了可能,未来可以探索将其应用于更广泛的领域,如工业和环境监测,并考虑与其他机器学习模型集成以提高检测的准确性和鲁棒性。此外,BeatGAN还显示出良好的通用性,能够准确检测多变量运动捕捉时间序列中的不寻常运动,证明了其在不同领域的应用潜力。

2024-06-07 14:30:38 568

原创 论文合集整理推荐2024.6.4

原创 小王搬运工。

2024-06-07 14:00:51 373

原创 科研新助力:深度解读国产大模型Kimi

在学术界,杨植麟师从苹果公司AI负责人,曾在Facebook AI Research工作,是中国35岁以下NLP(自然语言处理)领域引用最高的研究者之一。他还是Transformer-XL和XLNet两篇重要论文的第一作者,这两篇文章均为大语言模型领域的核心技术。在AI大模型的赛道上,虽然GPT-4等国际巨头依旧占据着领先地位,但近期,一款名为Kimi的国产大模型横空出世,以其卓越的性能和独特的优势,迅速赢得了市场的关注和用户的青睐。Kimi支持高达200万字的超长文本处理,这在当前市场上是极为罕见的。

2024-06-07 09:57:09 1257

原创 NMF算法

NMF算法的原理是找到一个分解矩阵,将原始非负数据投影到新的空间中,新空间的每个维度(基础矩阵)都与原始数据的维度正交,并且第一个基础矩阵具有最大的活跃度(即能解释数据中最多的信息),第二个基础矩阵具有第二大的活跃度,且与第一个基础矩阵正交,依此类推。NMF是一种数据降维模型,它的基本模型是通过矩阵分解将非负数据转换到新的空间,这个新空间的坐标轴(基础矩阵)按照数据的活跃度排序,活跃度越高的基础矩阵能保留更多的数据信息。NMF能够减少数据的维度,去除冗余信息,帮助我们从高维非负数据中提取出最重要的特征。

2024-06-06 20:24:01 944

原创 PCA算法

PCA的目标是找到一个变换,将数据投影到一个新的空间中,这个新空间的每个维度(主成分)都与原始数据的维度正交。PCA算法的原理是找到一个变换矩阵,将原始数据投影到新的空间中,新空间的每个维度(主成分)都与原始数据的维度正交,并且第一个主成分具有最大的方差(即能解释数据中最多的变异性),第二个主成分具有第二大的方差,且与第一个主成分正交,依此类推。PCA是一种数据降维模型,它的基本模型是通过线性变换将数据转换到新的空间,这个新空间的坐标轴(主成分)按照方差的大小排序,方差越大的主成分能保留更多的数据信息。

2024-06-06 20:22:44 721

原创 SVM算法

SVM算法的原理是找到一个最佳的超平面,将不同类别的数据点分开,并且使得超平面到最近的数据点的间隔最大化。SVM 的目标就是找到一个最佳的超平面,能够将不同类别的数据点分开。SVM是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。通过找到一个最佳的超平面,将不同类别的数据点分开,实现对数据的分类。在处理非线性可分数据时,SVM 通过核技巧将数据映射到更高维的空间,以便在新的空间中找到一个更好的超平面来分类数据。

2024-06-06 20:20:01 747

原创 通过血清拉曼光谱进行COVID-19的高效初步筛查

本研究提出了一种基于血清拉曼光谱技术的高效初步筛查方法,通过对177份血清样本的分析,包括确诊的COVID-19患者、疑似病例和健康对照组,利用拉曼光谱检测和机器学习支持向量机方法,建立了一个诊断算法,该算法在区分COVID-19病例与疑似病例、以及健康对照组方面显示出了高准确率,分类准确率分别达到了0.87和0.90,表明拉曼光谱技术是一个安全、高效的COVID-19筛查工具,具有重要的临床应用潜力。此外,该方法对于无症状和有症状的COVID-19患者都表现出较高的敏感性,有助于疫情的防控。

2024-06-04 20:14:18 1367

原创 高质量英文文献应该如何查找并且阅读?

通过中国计算机学会发布的CCF推荐国际学术刊物目录进行查找期刊或者会议是否属于顶刊顶会:https://www.ccf.org.cn/Academic_Evaluation/By_category/我们查找到相关论文后接下来要进行的步骤就是查看该论文发表期刊的等级。论文我一般看中科院一、二区或者CCF-A,CCF-B发表的论文,其余有兴趣的论文也可以自行决定阅读。使用connected papers进行查找论文的引用和被引用情况:https://www.connectedpapers.com/

2024-05-15 21:09:14 259

原创 论文合集整理推荐2024.5.15

‍2012年论文合集:论文入口‍2019年论文合集:论文入口2022年论文合集:论文入口2023年论文合集:论文入口2024年论文合集:论文入口

2024-05-15 21:07:42 458

转载 基于gan的不平衡工业时间序列异常检测方法

本文提出了一种基于GAN的异常检测方法,通过仅使用正常样本进行训练,并通过生成更高的异常评分来检测异常样本。在实验中,所提出的方法在两个滚动轴承数据集上都实现了100%的准确率。实验结果显示,该方法在两个数据集上均实现了100%的分类准确率,能够有效区分正常样本和异常样本,并对噪声具有良好的鲁棒性。论文总结了提出的方法在处理工业类不平衡数据上的有效性,并指出未来工作将包括结合多维时间序列数据以实现更好的诊断效果。仅使用正常样本进行训练,通过最小化生成器的输出误差,使生成样本尽可能接近真实样本。

2024-05-15 21:06:32 42

原创 时序医疗数据集---adfecgdb

该数据库包含了在波兰西里西亚医科大学妇产科,通过使用KOMPOREL系统收集的5位临产孕妇(孕38至41周)的多通道胎儿心电图(FECG)记录。这些记录通过腹部四个电极和安置在胎儿头部的直接心电图电极同步收集,以评估新的FECG处理技术的效果。记录采用EDF/EDF+格式存储,包括直接和间接FECG信号及R波位置的参考标记。技术规格包括1Hz至150Hz的带宽,1kHz的采样率和16位的分辨率,适用于提高非侵入式胎儿监测技术的研究与开发。edf:包含记录的5个通道30万个数据点。qrs:包含手动数据标签。

2024-05-10 21:08:24 236

原创 python爬取sci论文等一系列网站---通用教程&超详细教程

爬取网页

2024-05-09 16:53:01 674

原创 对时间序列异常检测的严格评价

新的评估基准:论文通过实验表明,即使在禁用PA协议的情况下,一个未经训练的模型也能达到与现有方法相当的检测性能。新评估协议:实验中引入了PA%K协议,这是一个修改版的PA,只在检测到的异常在某个段落中的比例超过阈值K时才将整个段落标记为异常。新的评估协议:为了克服传统评估方法的缺陷,论文提出了一个新的评估协议,旨在提供更准确和公平的性能比较方式。未来研究方向:论文最后提出了对未来时间序列异常检测研究的几点建议,包括发展更为精细的评估标准和改进现有的数据集,以更好地反映真实世界中的异常情况。

2024-05-09 16:38:07 338

原创 论文复现---FGANomaly

将生成的文件放入对应的文件夹中,比如MSL数据集生成的数据放入msl_raw_data文件夹下,其余数据集类似。运行data_preprocess.py文件,会在processed目录下生成对应的3个.pkl文件。我们对代码新增加了数据集预处理部分,通过预处理生成该项目所需要的训练数据格式。这里我们只复现SMAP数据集,其余数据集可直接进行替换设置。

2024-05-07 09:31:43 336

原创 快速解决:note: This error originates from a subprocess, and is likely not a problem with pip.

我使用pip install ***命令时报错 :note: This error originates from a subprocess, and is likely not a problem with pip.解决方法:使用conda install ***即可解决。

2024-04-17 15:45:21 1238

原创 机器学习常用评价指标的公式和含义

定义: 在多类别或多标签任务中,对每个类别的平均精确率(AP)进行平均后得到的指标。- 公式: TP = 数量(真实标签 = 正类 and 预测标签 = 正类)- 公式: FN = 数量(真实标签 = 正类 and 预测标签 = 负类)- 定义: 精确率和召回率的调和平均,用于综合评价模型的精确率和召回率。- 定义: 在所有实际为正类的样本中,被模型正确预测为正类的比例。- 定义: 在所有被模型预测为正类的样本中,实际为正类的比例。- 定义: 错误地预测为正类的样本数量(实际为负类)。

2024-04-17 15:09:26 582

原创 论文复现---MUTANT

首先下载数据集并放入创建的data目录下,即可。这里复现的数据集是SMAP数据集,这里由于作者电脑性能不足删除了部分数据集,如圈2展示。运行data_preprocess.py文件,会在processed目录下生成对应的3个.pkl文件。要求python 3+版本,其中pandas安装不上,我采用的默认版本。

2024-04-17 10:35:41 310

原创 时序数据集---SMAP&MSL

SMAP和MSL是来自NASA的两个公开的真实世界专家标记数据集。每个数据集包含一个训练集和一个测试集,测试集中的异常被标记。它们分别包含27个和55个实体的数据,每个实体分别由55个和25个度量(变量)监视。

2024-04-16 19:56:09 922 1

原创 Script file ‘D:\Anaconda\Scripts\pip-script.py‘ is not present.

确认 pip 是否已经安装在 Anaconda 中。这通常发生在尝试使用 pip 时,但 pip 没有正确安装或者路径设置不正确时。如果上述步骤都不能解决问题,可能需要重新安装 Anaconda 或者修复 pip 安装。如果使用的是虚拟环境,确保激活了正确的虚拟环境。确认环境变量中的路径设置是否正确。是否在系统的 PATH 环境变量中。这个错误表明系统尝试执行的脚本文件。

2024-04-16 11:29:01 832

原创 虚拟环境下的Pip引用外部环境的解决方法

当你使用新创建的虚拟环境时,测试pip list却显示了一堆自己没有的功能包,这是因为你的环境错乱了,废话不多说直接上解决办法。在系统变量部分,Anaconda要求前边没有其余的python环境路径。设置-》高级系统设置。

2024-04-16 11:21:48 157

原创 基于变量间注意机制的Transformer多元时间序列异常检测

本文提出了一种基于变压器模型的多变量时间序列异常检测方法,命名为变量时间变换器(Variable Temporal Transformer, VTT),特别强调了通过结合时间自注意力和变量自注意力机制来捕捉时间序列数据中的时间依赖性和变量间的相关性。VTT模型的核心贡献包括:引入了一种新颖的自注意力机制,有效整合了时间依赖性和变量间相关性的分析,提高了多变量时间序列异常检测的准确性和效率。设计了异常解释模块,不仅能检测出异常,还能在一定程度上解释异常发生的原因,提高了异常检测的可解释性。

2024-04-11 11:31:05 1095

原创 多传感器时间序列信号的无监督深度异常检测

在本文中,提出了一种新的基于深度学习的异常检测算法,称为深度卷积自编码记忆网络(CAE-M)。我们首先构建了具有最大平均差异(MMD)惩罚的深度卷积自编码器,以表征多传感器时间序列信号,并降低由训练数据中的噪声和异常引起的过拟合风险。本文提出了一种卷积自编码记忆网络。特征网络使用深度卷积自编码器来学习低维特征,Z_f表示的自编码器的特征提取结果,Z_r表示原始数据与重构数据之间的均方误差。在未来的工作中,我们将专注于基于点的细粒度异常检测方法,并通过设计适当的稀疏操作进一步改进我们的多传感器数据检测方法。

2024-04-11 11:29:10 309

原创 基于GAN的多变量时间序列污染训练集异常检测

针对传统的基于AE和基于GAN的异常检测方法存在的过拟合问题,我们提出了Filter GAN,在训练鉴别器之前对可能的异常样本进行筛选,使模型能够准确地捕捉到正态数据的分布,并为生成器设计了一个特殊的目标Adaptive Weight Loss,在训练过程中根据不同点的重构误差动态分配权重。然而,现有的基于人工神经网络的方法缺乏针对异常检测任务设计的有效正则化方法,容易过拟合,而基于GAN的方法大多是在无污染的训练集假设下进行训练,这意味着训练集全部由正常样本组成,在实践中很难满足这一要求。

2024-04-11 11:26:04 605 1

原创 基于特征的多模态生物信号信息检索与自相似矩阵:专注于自动分割

最后,通过分析SSM来检索信息,包括使用新颖性搜索确定信号的变化点、周期性搜索识别重复模式,以及通过相似性分析比较不同子序列或段落之间的相似度。新颖性搜索:在SSM的对角线上应用一个特定的核(如棋盘格模式的核),通过滑动这个核并计算新颖性函数来识别变化点,即时间序列行为的显著变化。2. 构建自相似矩阵(SSM):利用提取的特征构建SSM,其中矩阵中的每个元素代表时间序列中两个子序列之间的相似度。相似性分析:分析SSM中的相似性轮廓,比较不同子序列之间的相似度,用于进一步的分析和处理。

2024-04-11 11:23:38 372

原创 网络流量中的准周期通信行为的分析和检测

它们之间的点是噪声。考虑到应用流可能有多于一个LTQP通信行为,所有非零周围的IPGT类应该被检测为准周期,并使用短路判断,只要有一个类是准周期的,就可以确定流具有准周期通信。选择了基于密度的空间聚类算法DBSCAN,其基本思想如下:聚类中的每个点在给定的半径内至少包含给定数量的点,密度足够高的区域将被划分为一个类。通过实验,实现了对LTQP通信行为的检测。步骤3:否则,形成一个新的IPT类C,将P添加到C中,并将P的附近点中未访问且在reps内有超过Ptsmin个附近点的所有点标记为已访问。

2024-04-11 11:19:23 436

原创 时序数据集---Server Machine Dataset(SMD)

文件名采用machine-x-y.txt的形式,其中x代表组,y是组里的index,每一个machine-x-y代表一个具体的机器。训练集与测试集的数据量是1:1的,训练集无label,测试集有label。interpretation_label:该数据集给出异常点的具体异常。数据集收集的是28个机器连续5周的数据,相邻两组数据间间隔一分钟。总共收集28个机器的数据,每个机器收集38个维度(变量)的信息。train:包含数据的前半部分,作为训练集,无标签。test:包含数据的后半部分,作为测试集,有标签。

2024-04-11 11:13:41 593 10

原创 在论文写作中issues、question和problems如何区别和使用

总结来说,"issues"更倾向于广泛讨论的主题,"questions"指向研究试图回答的具体询问,而"problems"则聚焦于需要解决的具体挑战。在学术论文写作中,"issues"、"questions"和"problems"这三个词虽然有时可互换使用,但它们各自侧重点略有不同,正确的使用可以帮助清晰地传达你的研究焦点和目的。- 在论文中使用"issues"时,往往强调的是研究领域中存在的争议、需要进一步探讨的复杂情况或需要被关注的趋势。

2024-02-29 14:53:05 924

原创 打开多个Texstudio窗口的办法,不是打开多个tex文件(in Windows)

打开Texstudio的快捷方式(注意是你经常点击的快捷方式,可执行文件exe只有一个,但是快捷方式可以有很多个),右键快捷方式,进入属性,会看到“目标”,在应用的可执行文件路径之后加上:--start-always "%1"由于texstudo只能打开一个窗口,每次只能编译一个,非常麻烦。以下给出同时打开多个窗口(session)的办法。

2024-01-02 14:05:13 998 1

原创 安装python后发现没有pip怎麽办

【代码】安装python后发现没有pip怎麽办。

2023-12-30 22:14:30 682

原创 python使用订阅发布模式共享数据

请注意,对于这种方法,两个文件(模块)需要运行在同一个Python解释器实例中,因为 `PyPubSub` 在内存中传递消息。在这个示例中,`publisher.py` 发布一个名为 `new_data_event` 的事件,而 `subscriber.py` 订阅这个事件。当事件被发布时,订阅者的处理函数 `handle_event` 会被调用。首先,您需要安装 `PyPubSub` 库。`PyPubSub`,它可以处理不同实例之间的事件传递。### `subscriber.py` - 订阅者。

2023-12-21 15:59:34 776

原创 latex使用技巧:其中一行文字超出正文边界(设置自动换行,两端对齐)

【代码】latex使用技巧:其中一行文字超出正文边界(设置自动换行,两端对齐)

2023-12-08 15:52:31 3430

原创 AI工具合集

今天发现了一个AI工具集合站——futurepedia(未来ai百科网站),将全网897种AI工具分成了49个类别,而且每天都在更新。由于很多AI工具都很抢手,大多数都需要付费,网站中也有对它们进行筛选,分成了免费试用、免费增值、支付、开源、候补工具、移动应用等,大家可以根据自己的需求来选择。如今,AI技术涉及到了很多领域,比如去水印、一键抠图、图像处理、AI图像生成等等。网站:未来百科 | 为发现全球优质AI工具产品而生 (6aiq.com)包含了AI对话、AI绘画、文本AI等多个内容。

2023-11-19 15:10:07 292

时钟,指南针,水平仪表盘

时钟,指南针,水平仪表盘

2022-04-13

数据结构第一章重要代码.zip

顺序表的删除插入合并算法

2020-08-19

python实验报告7 smtp协议.zip

根据自己使用的邮件服务器,完成smtp协议的服务开启 给特定邮箱发送图文并茂的邮件,邮件正文包含的表格如下所示,显示的图片自己确定。 给特定邮箱发送邮件,邮件附件为“实验报告7 smtp协议

2019-12-21

python网络编程之http协议-数据提交

编写程序实现通过有道或百度翻译url对用户输入数据进行翻译: 进入有道翻译或者百度翻译页面,找出页面向服务器提交待翻译数据使用的url; 使用浏览器分析工具分析相关需要提交的数据字段以及值,主要包括:(1)待翻译词语或句子使用的字段数据;(2)待翻译数据使用的语言;(3)翻译结果使用的语言;(4)返回的翻译结果使用的数据类型;(5)其他需要的数据字段 获取使用requests库post方法提交数据所需其他数据,如headers中使用的数据信息(如User-Agent,cookies等) 实现完整的程序,并运行程序,对输入的待翻译的内容的返回结果进行验证;如果出现返回为空值等问题,请对可能的原因进行分析,并给出可行的解决方案。

2019-12-21

python网络编程之http协议-数据请求

编写程序实现新闻网页数据的请求和获取数据的保存: 进入一个学校的新闻首页,分析各不同新闻网页url之间的区别和联系,并根据得到的规律通过程序生成所要请求的网页的url(前30个页面)。 使用requests库通过http协议的get方法向web server 请求30个页面的数据,要求:(1)30个请求分别由5个线程实现,每个线程负责6个url页面的请求;(2)每个线程中的不同页面请求的时间间隔是3秒;(3)当线程中成功获取某一个新闻网页数据后,需要在屏幕上输出相应的状态信息(如。。。网页请求成功) 对于每个获取的网页数据,分别将其写入到本地相应的html文件中,要求本地网页数据文件的文件名为pageXXX(XXX为请求页面的编号) 对生成的文件进行验证,如果出现中文乱码的问题,请对可能的原因进行分析,并给出可行的解决方案。

2019-12-21

python网络编程之服务器架构

编写程序分别实现服务端和客户端要求功能 服务器能够使用TCP协议同时为多台客户端主机提供部分电影的演员信息查询服务(基于多线程或者异步通信): 服务端启动后,需先建立数据结构来存储从movieResult.csv文件中读入的电影数据,并建立socket对象监听客户端的TCP连接请求,如有请求便同意与客户端建立tcp连接 客户端运行时能够提示并接收用户输入的电影名称,并将电影名称数据传递给服务器(需与服务器建立tcp连接) 服务器接收到客户端传递的电影名称后,查询读入的电影数据,如果没有该电影的演员信息则返回没有该电影数据!,如果有该电影的演员信息则返回该电影的主演信息 客户端接收到返回的查询结果后在屏幕上输出相应的结果 服务器为同一客户端提供连续查询服务的时间间隔为5秒

2019-12-21

python网络编程之网络数据与网络错误

服务器端和客户端IP:当前主机IP 分析给定通信程序中的client端和server端代码,对出现的粘包问题进行简单描述并分析出现的原因 设计一个方案解决通信中的粘包问题 对client端和server端程序进行修改,并验证方案的正确性

2019-12-21

UDP c/s结构通信 扫描主机端口状态

UDP c/s结构通信 服务器端和客户端IP:当前主机IP(192.168.?.?) 服务器监听端口:服务器启动时默认侦听端口为1060,当客户端有udp数据传过来时,可以对数据进行解码(utf-8)并打印出客户端传输的字符串数据,同时给发送数据的客户端传输字符串数据“你好,我是服务器+(ip,port),有事情可以随时联系我!” 客户端端口:系统随机选定(范围为10000-20000)。 要求客户端启动后给服务器发送一个字符串数据“服务器你好,我是客户端+(ip,port)”,发送完数据后客户端便处于等待服务器端使用udp协议回复信息状态,接收到回复信息后,在屏幕上输出解码后的数据。 扫描主机端口状态 建立程序能够对本机的常用接口状态进行检测,并将扫描到的活动端口信息写入到scanResult.txt文件中 常用的端口列表portLs=[21, 22, 23, 25, 80, 135, 137, 139, 445, 1433, 1502, 3306, 3389, 8080, 9015]

2019-12-21

Library.zip

以下提供数据库建立文件 /* Navicat MySQL Data Transfer Source Server : localhost_3306 Source Server Version : 80013 Source Host : localhost:3306 Source Database : db_books Target Server Type : MYSQL Target Server Version : 80013 File Encoding : 65001 Date: 2018-12-21 12:55:28 */ SET FOREIGN_KEY_CHECKS=0; -- ---------------------------- -- Table structure for tb_books- -- ---------------------------- DROP TABLE IF EXISTS `tb_books`; CREATE TABLE `tb_books` ( `ID` int(255) unsigned NOT NULL AUTO_INCREMENT, `ISBN` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL, `book_name` varchar(255) DEFAULT NULL, `book_price` decimal(10,2) DEFAULT NULL, `book_author` varchar(255) DEFAULT NULL, `published_house` varchar(255) DEFAULT NULL, `book_category` varchar(255) DEFAULT NULL, `borrower_name` varchar(255) DEFAULT NULL, `borrower_phone` varchar(255) DEFAULT NULL, PRIMARY KEY (`ID`) ) ENGINE=InnoDB AUTO_INCREMENT=33 DEFAULT CHARSET=utf8 COLLATE=utf8_general_ci; -- ---------------------------- -- Records of tb_books -- ---------------------------- INSERT INTO `tb_books` VALUES ('1', '978-7-100-10618-4', 'Othello', '56.00', 'W. William Shakespeare', 'Shanghai World Book Publishing Company', 'G792', 'Mark', '13503383632'); INSERT INTO `tb_books` VALUES ('2', '978-7-111-29544-0', 'BBC Doctor Who: 12 Doctors, 12 Stories ,12 Postcards', '69.00', ' BBC', ' BBC', 'TP312', 'Mark', '13503383632'); INSERT INTO `tb_books` VALUES ('3', '978-7-115-21687-8', 'The Poetry of Pablo Neruda', '59.00', 'Pablo Neruda,Ilan Stavans,Firuz Kazemzadeh', ' FSG BOOKS', 'TP311.5', null, null); INSERT INTO `tb_books` VALUES ('5', '978-7-300-11134-6', 'Cereal City Guide PARIS CITY GUIDE', '59.00', 'Rich Stapleton', ' Cereal Magazine', 'F830', null, null); INSERT INTO `tb_books` VALUES ('6', '978-7-302-23755-6', 'Cereal City Guide Copenhagen CITY GUIDE', '36.00', ' Rich Stapleton', ' Cereal Magazine', 'TP312', null, null); INSERT INTO `tb_books` VALUES ('7', '978-7-302-27544-2', 'George W. Bush And the Southern Takeover of American Politics', '29.00', 'Michael Lind', 'New America Books', 'TP312', null, null); INSERT INTO `tb_books` VALUES ('8', '978-7-302-29391-0', 'How Liberals Hurt Those They Claim to Help', '34.50', 'Mona Charen', ' Sentinel', 'TP393.0', 'Mark', '13503383632'); INSERT INTO `tb_books` VALUES ('9', '978-7-5117-0157-2', 'Lincoln in the Bardo', '16.00', 'George Saunders', 'Bloomsbury Publishing PLC','I', null, null); INSERT INTO `tb_books` VALUES ('10', '978-7-5327-5110-5', 'A Song of Ice and Fire Box Set', '58.00', 'George R. R. Martin',' HarperCollins UK','I', null, null); INSERT INTO `tb_books` VALUES ('11', '978-7-5399-3321-4', 'The New World Champion Paper Airplane Book','28.50', 'John M. Collins',' Ten Speed Press', 'I207.23', null, null); INSERT INTO `tb_books` VALUES ('23', '978-7-5399-5488-2', 'Introduction to Linear Algebra', '34.00', 'Gilbert Strang', ' Wellesley College', 'I', null, null); -- ---------------------------- -- Table structure for tb_user -- ---------------------------- DROP TABLE IF EXISTS `tb_user`; CREATE TABLE `tb_user` ( `id` int(255) unsigned NOT NULL AUTO_INCREMENT, `user` varchar(255) DEFAULT NULL, `passwd` varchar(255) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8 COLLATE=utf8_general_ci; -- ---------------------------- -- Records of tb_user -- ---------------------------- INSERT INTO `tb_user` VALUES ('1', 'root', 'root');

2019-12-20

cp201x资源启动程序

Install driver for USB-UART bridge converter on Linux Ubuntu12.04 Ubuntu下USB转串口芯片驱动程序安装,支持cp210x,pl2303等 Reference: Fixing the cp210x open - Unable to enable UART Error When you plugin your USB-UART converter, and run "> ls /dev/tty*", if you don't see the /dev/ttyUSB0 (or similar), your Linux does not detect your USB-UART device. We need to install the driver for your device. Here we use Ubuntu12.04, and Updated the source to 3.2.0 version. If there is difference about version Number from your OS platform, please try to modify it into yours. 1.Download the Linux Source Code Open a terminal and execute the following commands. Note that your version of Linux may differ slightly -- adjust accordingly. $ cd ~ $ sudo apt-get install build-essential linux-source $ cp /usr/src/linux-source-3.2.0.tar.bz2 . $ bunzip2 linux-source-3.2.0.tar.bz2 $ tar xf linux-source-3.2.0.tar $ cd ~/linux-source-3.2.0 2.Recompile and Reinstall the cp210x Driver From within a terminal, execute: $ cd ~/linux-source-3.2.0 $ make oldconfig $ make prepare $ make scripts $ cp /usr/src/linux-headers-3.2.0-34-generic-pae/Module.symvers . Here, I have the "3.2.0-29" version also, I launched the command above, but not the below: "cp /usr/src/linux-headers-3.2.0-29-generic-pae/Module.symvers ." Recompile and Reinstall the cp210x Driver Here, We can actually install many kinds of USB-UART converter drivers. We take cp210x as the example. From within a terminal, execute: $ make M=drivers/usb/serial $ sudo mv /lib/modules/$(uname -r)/kernel/drivers/usb/serial/cp210x.ko /lib/modules/$(uname -r)/kernel/drivers/usb/serial/cp210x.ko.old $ sudo cp drivers/usb/serial/cp210x.ko /lib/modules/$(uname -r)/kernel/drivers/usb/serial/ $ sudo modprobe -r cp210x $ sudo modprobe cp210x Reboot Linux system. Run Terminal: $ ls /dev/tty* The we can see the device is detected by Linux Host OS: 【技术】Ubuntu下USB转串口芯片驱动程序安装cp210x,pl2303 Reference: http://pharos.ece.utexas.edu/wiki/index.php/Fixing_the_cp210x_open_-_Unable_to_enable_UART_Error_-_04/17/2011 Then, We can configure the minicom to communicate with our target board. ====================================================== Here is an example of configure the parameters of minicom for TLL6527M PAL board: I just copied it here hardly without any font editing. Sorry about that. Serial Communications from Host-PC to TLL6527M Target Hardware The TLL System Design Environment (SDE) running on the host PC comes pre-configured with the required settings for serial-UART communications between the host PC and the TLL6527M base module. Generally, for use with TLL6527M the settings need not to be changed (Note: From the SDE OS version 0.3.2, the serial terminal program Minicom is set to open /dev/ttyUSB0 with the needed configuration as mentioned above.). To start serial communication from host to the TLL6527M, open the serial communication terminal program Minicom. Just open a terminal window on your Linux SDE running on the host PC and type the command "minicom" at the command prompt on your host PC terminal console. The TLL6527M on power-up is set by default to the following serial-UART communication settings: Bits per second = 115200 Data bits = 8 Parity = None Stop Bits = 1 Flow control = None Make sure that the TLL6527M's USB-UART port has been mapped to a ttyUSBx device node in the /dev folder on the host PC SDE. See following example: 【技术】Ubuntu下USB转串口芯片驱动程序安装cp210x,pl2303 Now make sure that this "ttyUSBx" is set as the destination port, baud rate is 115200, and 8N1 mode for minicom, by running the command 'minicom -s'. Note that running the "minicom -s" command as a normal user will only apply the settings for the current session. In order to make the settings permanent, these commands need to be run with root privileges.See example below: 【技术】Ubuntu下USB转串口芯片驱动程序安装cp210x,pl2303 The following window will appear on your host PC terminal window: 【技术】Ubuntu下USB转串口芯片驱动程序安装cp210x,pl2303 Go to ‘Serial port setup’, following screen will appear, make sure that serial device is set to ‘/dev/ttyUSB0’ and bps/par/bits is set to 115200 8N1: 【技术】Ubuntu下USB转串口芯片驱动程序安装cp210x,pl2303 Now go back to the main menu and choose ‘save setup as dfl’. This will save the configuration settings and from next time onwards user can directly run ‘minicom’ command without the option ‘–s’ and it will load settings from the saved file. 【技术】Ubuntu下USB转串口芯片驱动程序安装cp210x,pl2303 RESET the target by using the SDE's TLL6527M reset utility or by pressing the RESET button on the target. Following messages will be displayed on the terminal. By default, U-Boot is setup to automatically start booting the OS after waiting for a few seconds for the user to interrupt the automatic launch by pressing any key. So to stop U-Boot from loading uClinux and provide U-Boot command prompt, just hit any key. (This is assuming TLL6527M is flashed with u-boot and uClinux. TLL6527Ms are pre-flashed with firmware before shipping).

2018-05-20

c++学习

C++学习 实验题目

2018-05-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除