- 博客(308)
- 资源 (11)
- 收藏
- 关注
原创 论文写作经验-相关工作1
There are two popular technique to seismic data processing.后面即可以用 One is xxx. The other is yyy.当然,这个地方也可以增加一些小章节,自己把握就好。比如:一些术语定义、使用到的其余算法都可以适当增加1-2小节。后边几段要围绕着这几类分类进行,要保证每一个分类要写一段内容。论文树状结构,该结构分层清晰,有利于读者阅读。让读者读起来舒服的写作逻辑,换位思考。2024年07月26日 20:49。
2024-07-26 20:53:58 444
原创 论文写作经验-表格1
表格最重要的一点是整齐,要求每一列小数点后保持位数一致并且要求按照小数点位置进行对齐,不要选择居中对齐,一般选择左对齐或者右对齐即可。2024年07月25日 23:37。好看的表格赏心悦目!最优:$\bullet$次优:$\circ$
2024-07-25 23:39:20 315
原创 论文写作经验-引言2
1. 写论文时一定要站在读者和审稿人的角度去写。就像一个练武的人,开始学一些招数时,会感受到束缚,但是,一旦你熟练了就会运用自如。3. 在介绍之前的技术时我们往往会喜欢使用however来进行吐槽别的方法的局限性。但是一个however就相当于挖的一个坑,要记得填坑。所谓填坑就是这个局限性一定是被自己或者后来的技术解决了的。5. 我们在写自己方法的时候经常会这样写:我们提出了...方法...提升了效率。这个地方写的就是废话,我们发论文肯定会有效果提升啊!4. 带着目的找参考文献,不要顺藤摸瓜!
2024-07-18 18:10:26 233
原创 论文写作经验-引言1
一般我们开头先说本论文提出了***框架/结构,并且包含了n种技术。可以使用,第一,,,,。接下来,介绍我们的方法是如何解决这个问题的。发展阶段B解决了A阶段问题,但是引发了新的问题。发展阶段C解决了B阶段的问题,但是也引发了新的问题。引言主要分为以下几个结构:研究背景+当前技术存在的问题或难点+我们提出了什么方法去解决了这些问题+实验结果展现和分析+论文结构详解。这个地方主要写当前有哪些技术,并简要介绍这些技术的实现过程。最后老师还提到了我写的论文语言不够优美,啊啊啊啊啊,这个还是需要看论文才能体验到。
2024-07-17 19:23:09 755
原创 论文写作经验-单词缩写1
有很多人认为引言中使用了ECG,摘要中只出现了一次,那在摘要中也进行缩写,这是不对的。摘要,引言,相关工作等部分作为一个个个体存在。如果ECG在摘要中没有用到,就不需要缩写。2024年07月17日 13:03。注意:每一部分当做个体来看!
2024-07-17 19:21:41 205
原创 论文写作经验-题目1
越短表示创新性越高, 如rough sets, fuzzy sets 等等. 如果你敢写这么短的题目而且能被录用, 也不需要从本贴学到任何东西了.如果这样写, 读者会觉得该论文只是已有方法一个简单的扩展, 或者简单的应用. 有些中文期刊明确要求论文题目不要使用 “基于”, 因为这种题目泛滥.对于计算机方面论文而言, 应该写出自己提出的新问题或新方法. 新问题应该有意义而且有挑战性, 新方法则应该高效或准确.提出了一个新的问题, 其中频繁模式挖掘是更大的问题, 三分符号表则是本问题的特色.
2024-07-17 19:20:27 491
原创 论文写作经验-论文摘要举例
译文:本文提出了一种具有课程学习功能的双解码器网络(DDNet)来解决这些问题。首先,我们设计了一个U-Net,具有两个解码器,以获取速度模型的速度值和地层边界信息。其次,我们通过组织三个难度级别的数据,将课程学习引入网络训练。例如,需要设计有效的深度网络,需要控制训练过程,需要增强泛化能力。解析:此部分写当前存在的挑战。这里提出来三个挑战,后面必然会跟着这三个问题对应的解决方案,做到了一一对应。见解:这个主要看你的代码开不开源,不开源可以不写。译文:结果表明,我们的网络优于其他最先进的数据驱动网络。
2024-07-15 16:20:54 742
原创 论文写作经验-摘要1
本人菜鸡一名,最近几篇论文实验跑的比较顺利,结果也很不错,奈何于自己写作能力巨差,导致文章屡屡被拒。这个地方一般会先写为了解决上面提到的困难与挑战,提出了***方法/框架(1句话)。最后在分别写这几种技术是如何解决上述问题的(一种技术写2句话)。当前存在的问题,也可以说你的动机。However, 问题1, 问题2, and 问题3 are the key issues for ******.Firstly,技术1***. Secondly, 技术2***. Thirdly, 技术3***.
2024-07-15 13:12:47 387
原创 使用conda创建新的虚拟环境之后,通过pip install 在当前环境下安装一些package,但是显示已经安装。执行pip list发现显示的是base环境中的packages。
如果是在base环境下执行了 conda activate env,那么执行conda info 会显示。解决方案:先conda deactivate 再 conda activate env重新激活即可。level=2,表明嵌套了一层。
2024-06-22 16:01:52 567
原创 论文复现---USAD
链接:https://pan.baidu.com/s/1LbJvUzT-AFYH5cDHyzOI3A。提供main.py(作者自己根据jupyter文件整理得到)全套代码分享,包含数据集等,配好环境,没有问题即可运行。下载CSV文件到input文件夹下。--来自百度网盘超级会员V6的分享。其余环境默认安装即可。
2024-06-20 15:46:00 525
原创 USAD: 多元时间序列的无监督异常检测
时间序列:论文首先定义了单变量和多变量时间序列的概念,区分了它们在数据点上的不同。异常检测任务:描述了在给定时间序列数据集的情况下,如何通过训练数据来识别异常点。
2024-06-20 11:00:36 551
原创 环境报错:undefined symbol: iJIT_IsProfilingActive
5. **随机数生成**:提供高质量的随机数生成器,支持多种分布(如正态分布、均匀分布等),适用于蒙特卡洛模拟、统计分析等领域。3. **矢量数学库(VML)**:包括常用的数学函数(如指数、对数、三角函数等)的高效实现,可以对矢量进行操作。2. **快速傅里叶变换(FFT)**:提供高效的FFT计算,用于信号处理、图像处理等领域。4. **稀疏矩阵运算**:提供稀疏矩阵的存储、变换和求解功能,适用于大规模稀疏矩阵的计算。
2024-06-19 21:52:15 516
原创 精品壁纸分享
链接:https://pan.baidu.com/s/1hgxeKLilnZvEnlMFYv0Ucg。--来自百度网盘超级会员V6的分享。
2024-06-11 16:20:31 531
原创 论文复现---BeatGAN
这个地方按照这个安装我尝试了很多次都没安装成功,如果配置过国内镜像源如清华源,其中是没有老版本pytorch,清华源最早支持gpu的pytorch版本是1.5.0。而且torchvision的0.2.1这个版本即使是在pytorch自己的仓库都找不到,只能找到0.2.0,更别说在国内的镜像源中了。然后找到torchvision,可以发现没有torch0.2.1,只有0.2.0,这里按照0.2.0安装也没有问题。全套代码分享,包含数据集等,配好环境,没有问题即可运行。问题3:GPU无法使用。
2024-06-11 10:05:17 500
原创 社区服务支持
在这里,每一位成员都是我们宝贵的财富,每一次分享都是我们共同成长的见证。我们诚挚地邀请您加入我们的专业社区——时序数据挖掘社区,一个专注于时序数据分析、挖掘与应用的交流平台。交流讨论:与行业专家进行深入讨论,共同探讨时序数据的奥秘。问题求助:与同行交流,解决您在时序数据处理中遇到的难题。学习打卡:记录您的学习进度,与志同道合的朋友一起成长。技术分享:获取最新的时序数据分析技术与方法。🤝 加入我们,一起探索时序数据的无限可能!- 时序数据分析的实战技巧和经验分享。- 一个充满活力和知识共享的社区环境。
2024-06-07 19:34:24 211
原创 BeatGAN:使用对抗生成时间序列的异常心律检测
BeatGAN作为一种创新的无监督异常心律检测算法,通过结合对抗生成网络的正则化能力和自编码器的重建特性,在心电图(ECG)数据上实现了接近0.95 AUC的高准确度,并且具有每心跳2.6毫秒的快速推理速度。此外,其快速推理的特点为集成到实时监测系统中提供了可能,未来可以探索将其应用于更广泛的领域,如工业和环境监测,并考虑与其他机器学习模型集成以提高检测的准确性和鲁棒性。此外,BeatGAN还显示出良好的通用性,能够准确检测多变量运动捕捉时间序列中的不寻常运动,证明了其在不同领域的应用潜力。
2024-06-07 14:30:38 663
原创 科研新助力:深度解读国产大模型Kimi
在学术界,杨植麟师从苹果公司AI负责人,曾在Facebook AI Research工作,是中国35岁以下NLP(自然语言处理)领域引用最高的研究者之一。他还是Transformer-XL和XLNet两篇重要论文的第一作者,这两篇文章均为大语言模型领域的核心技术。在AI大模型的赛道上,虽然GPT-4等国际巨头依旧占据着领先地位,但近期,一款名为Kimi的国产大模型横空出世,以其卓越的性能和独特的优势,迅速赢得了市场的关注和用户的青睐。Kimi支持高达200万字的超长文本处理,这在当前市场上是极为罕见的。
2024-06-07 09:57:09 1437
原创 NMF算法
NMF算法的原理是找到一个分解矩阵,将原始非负数据投影到新的空间中,新空间的每个维度(基础矩阵)都与原始数据的维度正交,并且第一个基础矩阵具有最大的活跃度(即能解释数据中最多的信息),第二个基础矩阵具有第二大的活跃度,且与第一个基础矩阵正交,依此类推。NMF是一种数据降维模型,它的基本模型是通过矩阵分解将非负数据转换到新的空间,这个新空间的坐标轴(基础矩阵)按照数据的活跃度排序,活跃度越高的基础矩阵能保留更多的数据信息。NMF能够减少数据的维度,去除冗余信息,帮助我们从高维非负数据中提取出最重要的特征。
2024-06-06 20:24:01 1208
原创 PCA算法
PCA的目标是找到一个变换,将数据投影到一个新的空间中,这个新空间的每个维度(主成分)都与原始数据的维度正交。PCA算法的原理是找到一个变换矩阵,将原始数据投影到新的空间中,新空间的每个维度(主成分)都与原始数据的维度正交,并且第一个主成分具有最大的方差(即能解释数据中最多的变异性),第二个主成分具有第二大的方差,且与第一个主成分正交,依此类推。PCA是一种数据降维模型,它的基本模型是通过线性变换将数据转换到新的空间,这个新空间的坐标轴(主成分)按照方差的大小排序,方差越大的主成分能保留更多的数据信息。
2024-06-06 20:22:44 822
原创 SVM算法
SVM算法的原理是找到一个最佳的超平面,将不同类别的数据点分开,并且使得超平面到最近的数据点的间隔最大化。SVM 的目标就是找到一个最佳的超平面,能够将不同类别的数据点分开。SVM是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。通过找到一个最佳的超平面,将不同类别的数据点分开,实现对数据的分类。在处理非线性可分数据时,SVM 通过核技巧将数据映射到更高维的空间,以便在新的空间中找到一个更好的超平面来分类数据。
2024-06-06 20:20:01 855
原创 通过血清拉曼光谱进行COVID-19的高效初步筛查
本研究提出了一种基于血清拉曼光谱技术的高效初步筛查方法,通过对177份血清样本的分析,包括确诊的COVID-19患者、疑似病例和健康对照组,利用拉曼光谱检测和机器学习支持向量机方法,建立了一个诊断算法,该算法在区分COVID-19病例与疑似病例、以及健康对照组方面显示出了高准确率,分类准确率分别达到了0.87和0.90,表明拉曼光谱技术是一个安全、高效的COVID-19筛查工具,具有重要的临床应用潜力。此外,该方法对于无症状和有症状的COVID-19患者都表现出较高的敏感性,有助于疫情的防控。
2024-06-04 20:14:18 1742
原创 高质量英文文献应该如何查找并且阅读?
通过中国计算机学会发布的CCF推荐国际学术刊物目录进行查找期刊或者会议是否属于顶刊顶会:https://www.ccf.org.cn/Academic_Evaluation/By_category/我们查找到相关论文后接下来要进行的步骤就是查看该论文发表期刊的等级。论文我一般看中科院一、二区或者CCF-A,CCF-B发表的论文,其余有兴趣的论文也可以自行决定阅读。使用connected papers进行查找论文的引用和被引用情况:https://www.connectedpapers.com/
2024-05-15 21:09:14 460
原创 论文合集整理推荐2024.5.15
2012年论文合集:论文入口2019年论文合集:论文入口2022年论文合集:论文入口2023年论文合集:论文入口2024年论文合集:论文入口
2024-05-15 21:07:42 476
转载 基于gan的不平衡工业时间序列异常检测方法
本文提出了一种基于GAN的异常检测方法,通过仅使用正常样本进行训练,并通过生成更高的异常评分来检测异常样本。在实验中,所提出的方法在两个滚动轴承数据集上都实现了100%的准确率。实验结果显示,该方法在两个数据集上均实现了100%的分类准确率,能够有效区分正常样本和异常样本,并对噪声具有良好的鲁棒性。论文总结了提出的方法在处理工业类不平衡数据上的有效性,并指出未来工作将包括结合多维时间序列数据以实现更好的诊断效果。仅使用正常样本进行训练,通过最小化生成器的输出误差,使生成样本尽可能接近真实样本。
2024-05-15 21:06:32 111
原创 时序医疗数据集---adfecgdb
该数据库包含了在波兰西里西亚医科大学妇产科,通过使用KOMPOREL系统收集的5位临产孕妇(孕38至41周)的多通道胎儿心电图(FECG)记录。这些记录通过腹部四个电极和安置在胎儿头部的直接心电图电极同步收集,以评估新的FECG处理技术的效果。记录采用EDF/EDF+格式存储,包括直接和间接FECG信号及R波位置的参考标记。技术规格包括1Hz至150Hz的带宽,1kHz的采样率和16位的分辨率,适用于提高非侵入式胎儿监测技术的研究与开发。edf:包含记录的5个通道30万个数据点。qrs:包含手动数据标签。
2024-05-10 21:08:24 391
原创 对时间序列异常检测的严格评价
新的评估基准:论文通过实验表明,即使在禁用PA协议的情况下,一个未经训练的模型也能达到与现有方法相当的检测性能。新评估协议:实验中引入了PA%K协议,这是一个修改版的PA,只在检测到的异常在某个段落中的比例超过阈值K时才将整个段落标记为异常。新的评估协议:为了克服传统评估方法的缺陷,论文提出了一个新的评估协议,旨在提供更准确和公平的性能比较方式。未来研究方向:论文最后提出了对未来时间序列异常检测研究的几点建议,包括发展更为精细的评估标准和改进现有的数据集,以更好地反映真实世界中的异常情况。
2024-05-09 16:38:07 751 3
原创 论文复现---FGANomaly
将生成的文件放入对应的文件夹中,比如MSL数据集生成的数据放入msl_raw_data文件夹下,其余数据集类似。运行data_preprocess.py文件,会在processed目录下生成对应的3个.pkl文件。我们对代码新增加了数据集预处理部分,通过预处理生成该项目所需要的训练数据格式。这里我们只复现SMAP数据集,其余数据集可直接进行替换设置。
2024-05-07 09:31:43 393
原创 快速解决:note: This error originates from a subprocess, and is likely not a problem with pip.
我使用pip install ***命令时报错 :note: This error originates from a subprocess, and is likely not a problem with pip.解决方法:使用conda install ***即可解决。
2024-04-17 15:45:21 3834 2
原创 机器学习常用评价指标的公式和含义
定义: 在多类别或多标签任务中,对每个类别的平均精确率(AP)进行平均后得到的指标。- 公式: TP = 数量(真实标签 = 正类 and 预测标签 = 正类)- 公式: FN = 数量(真实标签 = 正类 and 预测标签 = 负类)- 定义: 精确率和召回率的调和平均,用于综合评价模型的精确率和召回率。- 定义: 在所有实际为正类的样本中,被模型正确预测为正类的比例。- 定义: 在所有被模型预测为正类的样本中,实际为正类的比例。- 定义: 错误地预测为正类的样本数量(实际为负类)。
2024-04-17 15:09:26 688
原创 论文复现---MUTANT
首先下载数据集并放入创建的data目录下,即可。这里复现的数据集是SMAP数据集,这里由于作者电脑性能不足删除了部分数据集,如圈2展示。运行data_preprocess.py文件,会在processed目录下生成对应的3个.pkl文件。要求python 3+版本,其中pandas安装不上,我采用的默认版本。
2024-04-17 10:35:41 345
原创 时序数据集---SMAP&MSL
SMAP和MSL是来自NASA的两个公开的真实世界专家标记数据集。每个数据集包含一个训练集和一个测试集,测试集中的异常被标记。它们分别包含27个和55个实体的数据,每个实体分别由55个和25个度量(变量)监视。
2024-04-16 19:56:09 2168 1
原创 Script file ‘D:\Anaconda\Scripts\pip-script.py‘ is not present.
确认 pip 是否已经安装在 Anaconda 中。这通常发生在尝试使用 pip 时,但 pip 没有正确安装或者路径设置不正确时。如果上述步骤都不能解决问题,可能需要重新安装 Anaconda 或者修复 pip 安装。如果使用的是虚拟环境,确保激活了正确的虚拟环境。确认环境变量中的路径设置是否正确。是否在系统的 PATH 环境变量中。这个错误表明系统尝试执行的脚本文件。
2024-04-16 11:29:01 1008
原创 虚拟环境下的Pip引用外部环境的解决方法
当你使用新创建的虚拟环境时,测试pip list却显示了一堆自己没有的功能包,这是因为你的环境错乱了,废话不多说直接上解决办法。在系统变量部分,Anaconda要求前边没有其余的python环境路径。设置-》高级系统设置。
2024-04-16 11:21:48 201
原创 基于变量间注意机制的Transformer多元时间序列异常检测
本文提出了一种基于变压器模型的多变量时间序列异常检测方法,命名为变量时间变换器(Variable Temporal Transformer, VTT),特别强调了通过结合时间自注意力和变量自注意力机制来捕捉时间序列数据中的时间依赖性和变量间的相关性。VTT模型的核心贡献包括:引入了一种新颖的自注意力机制,有效整合了时间依赖性和变量间相关性的分析,提高了多变量时间序列异常检测的准确性和效率。设计了异常解释模块,不仅能检测出异常,还能在一定程度上解释异常发生的原因,提高了异常检测的可解释性。
2024-04-11 11:31:05 1611 1
原创 多传感器时间序列信号的无监督深度异常检测
在本文中,提出了一种新的基于深度学习的异常检测算法,称为深度卷积自编码记忆网络(CAE-M)。我们首先构建了具有最大平均差异(MMD)惩罚的深度卷积自编码器,以表征多传感器时间序列信号,并降低由训练数据中的噪声和异常引起的过拟合风险。本文提出了一种卷积自编码记忆网络。特征网络使用深度卷积自编码器来学习低维特征,Z_f表示的自编码器的特征提取结果,Z_r表示原始数据与重构数据之间的均方误差。在未来的工作中,我们将专注于基于点的细粒度异常检测方法,并通过设计适当的稀疏操作进一步改进我们的多传感器数据检测方法。
2024-04-11 11:29:10 485
原创 基于GAN的多变量时间序列污染训练集异常检测
针对传统的基于AE和基于GAN的异常检测方法存在的过拟合问题,我们提出了Filter GAN,在训练鉴别器之前对可能的异常样本进行筛选,使模型能够准确地捕捉到正态数据的分布,并为生成器设计了一个特殊的目标Adaptive Weight Loss,在训练过程中根据不同点的重构误差动态分配权重。然而,现有的基于人工神经网络的方法缺乏针对异常检测任务设计的有效正则化方法,容易过拟合,而基于GAN的方法大多是在无污染的训练集假设下进行训练,这意味着训练集全部由正常样本组成,在实践中很难满足这一要求。
2024-04-11 11:26:04 700 1
原创 基于特征的多模态生物信号信息检索与自相似矩阵:专注于自动分割
最后,通过分析SSM来检索信息,包括使用新颖性搜索确定信号的变化点、周期性搜索识别重复模式,以及通过相似性分析比较不同子序列或段落之间的相似度。新颖性搜索:在SSM的对角线上应用一个特定的核(如棋盘格模式的核),通过滑动这个核并计算新颖性函数来识别变化点,即时间序列行为的显著变化。2. 构建自相似矩阵(SSM):利用提取的特征构建SSM,其中矩阵中的每个元素代表时间序列中两个子序列之间的相似度。相似性分析:分析SSM中的相似性轮廓,比较不同子序列之间的相似度,用于进一步的分析和处理。
2024-04-11 11:23:38 412
python实验报告7 smtp协议.zip
2019-12-21
python网络编程之http协议-数据提交
2019-12-21
python网络编程之http协议-数据请求
2019-12-21
python网络编程之服务器架构
2019-12-21
python网络编程之网络数据与网络错误
2019-12-21
UDP c/s结构通信 扫描主机端口状态
2019-12-21
Library.zip
2019-12-20
cp201x资源启动程序
2018-05-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人