当人人都会用AI时,你如何用得更好更出彩?——《DeepSeek:从入门到精通》
引言
最近这个PPT真的很火,填补了AI使用进阶教程领域的空白。它几乎成为了DeepSeek的圣经,每个介绍DeepSeek的视频都会提到这份文档。
作者是清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后及其团队。团队成员专注于自然语言处理、深度学习和深度代码学习等研究方向,不过目前还没有找到配套的视频。
正好我需要一本AI指导教程,就花了一周时间仔细研读。虽然这是DeepSeek的教程,但其中的知识点也适用于其他大语言模型。
教程先介绍基础知识,然后深入探讨DeepSeek的高阶应用,包括工作流程整合和进阶提示词技巧等。
比如这里分析了推理模型(R1)和通用模型(V3)的优劣。尽管科研工作的严谨性需要使用R1这样的推理模型,但考虑到运行速度,实际工作中我们往往需要R1和V3交替使用。
总结:值得推荐,但有所保留。这份指南约一半的内容适用于科研工作,另一半则侧重于新媒体运营(小红书、抖音)。部分理论内容过于晦涩难懂,有点像AI生成的文字,给人一种"说了等于没说"的感觉。虽然目前没有更好的参考书,但欢迎大家在评论区推荐其他教程。(就像"如何读研"类的书籍,虽然多由社科专业学者撰写,但仍有参考价值)
小试牛刀
知识迁移(把别的领域的知识应用到科研上)
Q:上面这是AI使用过程中的知识转移技术(KTT)。我想请你将科研论文发表和新闻传播这两个领域进行知识迁移,用类似的提示词形式来表达。
deepseek R1:
随机组合机制(激活创意,固定设置几个元素整合在一起)
Q:你现在要给一个科研项目拟定研究思路,可以使用RCM来激发创意。元素库构建:
咖啡:阿拉比卡、罗布斯塔
生物领域:分子生物学、生物信息学、基因组学、基因工程
商业:精品咖啡、咖啡文化
deepseek R1:
把科研工作能用到的内容都做了注释
我将原版PDF和我的标注版本都放在下方。我标注出了适合科研人员的核心内容,同时也标出了不相关的部分,以减少冗余信息。我用实际科研问题测试了每个提示词技巧,结果都相当出色。不愧是清华博后的作品,这些技巧中随便掌握一个都能显著提升AI使用体验。
放一下硅基流动的邀请码
最近在研究AI的进阶用法,需要大量token,我选择了硅基流动的DeepSeek模型。现在有邀请码可以免费获得14元余额,足够使用很长时间。
本来打算直接在DeepSeek官网购买,但官网API目前暂停充值。
欢迎大家在评论区分享自己的邀请码,互帮互助,白嫖额度。
邀请链接:
https://cloud.siliconflow.cn/i/jAzGUe4A
我的邀请码:
jAzGUe4A
一周时间看完了最近疯传的清华大学《DeepSeek:从入门到精通》,我知道了如何在科研中把AI 用得更出彩