人工智能超万卡集群的设计架构解读

90ce573ea9dcb35c3b5b93d8d08b2c63.jpeg

 

超万卡集群的核心设计原则和总体架构

   

771edd09053da2e426c6b6accd83b7f6.jpeg

超万卡集群建设正起步,现主要依赖英伟达GPU及其配套设备。英伟达GPU在大模型训练中优势显著。国产AI芯片虽在政策与应用驱动下取得进步,但整体性能与生态建设仍有不足。构建一个基于国产生态、技术领先的超万卡集群,仍需克服诸多挑战。

大模型向万亿参数多模态演进,万卡集群亟需升级底层算力。核心在于强化单芯片性能、提升超节点计算能力、融合DPU多计算能力,并追求算力能效极致化

1、超万卡集群核心设计原则

在大数据与大算力驱动大模型构建的时代,超万卡集群的部署远非算力堆砌,而是追求数万GPU如“超级计算机”般高效协同。集群设计需遵循五大核心原则,确保高效运行与卓越性能。

倾力构建超万卡集群大算力基座:融合Scale-up与Scale-out互联技术,单节点算力飙升,集群规模跃升至万卡以上,共同构筑极致集群算力新标杆。

构建协同调优系统,利用超大规模算力集群,结合DP/PP/TP/EP等分布式并行策略,提升有效算力,优化计算通信比,极大提升模型开发效率。

专注实现持久稳定训练:自动检测修复软硬件故障,优化千万器件满负荷系统,增强MTBF、缩短MTTR,支持断点续训。确保千亿稠密、万亿稀疏大模型稳定训练长达百日,提升系统稳定性与鲁棒性。

坚持灵活算力供给,支持集群算力高效调度,实现弹性供给与隔离,按需调配训练与推理资源,确保单集群大作业与多租户多任务并行训练性能卓越,助力业务高效运行。

坚持绿色低碳发展,深化液冷解决方案在超万卡集群应用,实现卓越绿色算力能效比(FLOPs/W),突破液冷PUE至1.10以下,引领绿色计算新高度。

2、超万卡集群整体架构设计

超万卡集群架构独特,涵盖机房配套、基础设施、智算平台、应用使能四层,及智算运营运维一体化域,实现高效智能运算与管理。

90eee2fbcfde59344052dd9e337c26cb.jpeg

机房配套层专为超万卡集群高密度建设设计,聚焦高效供电、先进制冷、强承重楼板与精巧走线架,确保稳定运行。

基础设施层集算、网、存于一体,实现集群算力最大化。CPU、GPU、DPU协同,强化计算能力;网络采用独立组网,大带宽RoCE与二层CLOS满足大象流需求,确保负载均衡与多租安全;存储方面,融合与分级存储技术确保数据并发访问无阻塞。整体设计精准高效,满足高性能计算需求。

智算平台层以K8s为核心,高效整合裸金属与容器资源,实现集群资源的自动化精准管理,确保高效训练与稳定运行。展望未来,平台将引入异厂家GPU芯片,并融入算力原生技术,实现跨架构应用迁移与异构混训,有效避免智算碎片化,提升整体算力效能。

应用使能层集模型训练框架与开发工具集于一体。基于开源框架,我们进行分布式训练优化,并前瞻性地设计自动分布式训练框架,实现通信与计算优化、算子融合及网络性能调优。同时,我们研发数据服务与模型部署工具集,推动从人工到自动化模型研发的转变,提升研发效率与能力。


-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

### SimAI集群模拟器概述 SimAI集群模拟器是一款专为大语言模型训练设计的工具,能够有效模拟大规模GPU集群环境下的通信和计算过程[^1]。该模拟器特别适用于研究和开发人员测试不同规模下模型训练的效果。 ### 安装指南 对于希望部署SimAI集群模拟器的研究者来说,官方提供了详细的安装指导文档。通常情况下,安装流程涉及以下几个方面: - **依赖项准备**:确保环境中已安装必要的软件包以及库文件。 - **源码获取**:通过Git或其他版本控制系统下载最新版源代码。 - **编译构建**:按照README.md中的指示完成项目的编译工作。 - **配置参数调整**:依据实际需求修改默认设置以适应特定应用场景。 具体操作命令如下所示: ```bash git clone https://github.com/SimAICluster/simai.git cd simai pip install -r requirements.txt python setup.py install ``` 上述脚本用于克隆仓库并执行Python包管理器来安装所需的第三方模块。 ### 使用方法简介 为了帮助用户更好地理解和应用此工具,开发者编写了一系列教程文章和技术手册。这些资料涵盖了从基础概念介绍到高级特性使用的各个方面。例如,在启动一次完整的仿真实验之前,建议先阅读`docs/quickstart_guide.pdf`这份快速入门向导;而对于更深入的功能探索,则可以参阅`examples/tutorial.ipynb`这个Jupyter Notebook形式的教学实例。 另外,针对某些特殊场景的需求(比如自定义网络拓扑结构),还可以查阅API参考页面了解如何编程接口调用来实现个性化定制功能。 ### 获取更多资源 除了官方网站外,社区论坛也是交流经验和解决问题的好去处。在这里不仅可以找到其他用户的分享贴子,还能直接向维护团队提问获得及时反馈和支持。此外,GitHub Issues板块同样是一个重要的沟通渠道,适合报告Bug或者提议新特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科技互联人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值