大模型国产化迁移大模型到昇腾教程(Pytorch版)

ced6e127e73669fb57e43f82dd8a9a61.jpeg

大模型国产化适配10-快速迁移大模型到昇腾910B保姆级教程(Pytorch版)

随着ChatGPT的火爆,AI大模型时代来临,但算力紧张。中美贸易战及美国制裁AI芯片,国产化势在必行。已有国产AI芯片和Mindformers框架,基于昇腾910训练大模型,使用MindIE实现大模型服务化。

本文介绍如何迅速将大型模型迁移到昇腾910B,许多入门者都是从斯坦福羊驼开始的。我们将利用羊驼的训练代码和数据集,快速在昇腾910B上训练baichuan2-7B/13B和qwen1.5-7B/14B这两个大型模型。之前的文章已经详细讲解了如何从零开始复现斯坦福羊驼(Stanford Alpaca 7B),因此本文不再赘述该过程。斯坦福羊驼的整体思路如下图所示:

36c6d93e81efd58389416266812751ef.jpeg

准备工作

  • 操作系统版本/架构:EulerOS 2.0 (SP10)/aarch64
  • NPU:8x 910B 64G
  • Python:3.9
  • NPU 驱动:24.1.rc1,
  • NPU 固件:7.1.0.6.220,
  • CANN 工具包:7.0.0,
  • Pytorch及torch_npu插件:2.1.0,
  • Docker镜像优化:ascend-mindspore 23.0.0-A2-ubuntu18.04,
  • DeepSpeed:0.14.1,

查询所有设备的基本信息。

> npu-smi info
+------------------------------------------------------------------------------------------------+
| npu-smi 24.1.rc1 Version: 24.1.rc1 |
+---------------------------+---------------+----------------------------------------------------+
| NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page)|
| Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) |
+===========================+===============+====================================================+
| 0 910B1 | OK | 95.7 36 0 / 0 |
| 0 | 0000:C1:00.0 | 0 0 / 0 3306 / 65536 |
+===========================+===============+====================================================+
| 1 910B1 | OK | 96.7 38 0 / 0 |
| 0 | 0000:01:00.0 | 0 0 / 0 3307 / 65536 |
+===========================+===============+====================================================+
| 2 910B1 | OK | 92.2 36 0 / 0 |
| 0 | 0000:C2:00.0 | 0 0 / 0 3307 / 65536 |
+===========================+===============+====================================================+
| 3 910B1 | OK | 96.2 37 0 / 0 |
| 0 | 0000:02:00.0 | 0 0 / 0 3306 / 65536 |
+==========================

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科技互联人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值