NLP(14)--文本匹配任务

前言

仅记录学习过程,有问题欢迎讨论

步骤:
* 1. 输入问题
* 2. 匹配问题库(基础资源,FAQ)
* 3. 返回答案

文本匹配算法:

  • 编辑距离算法(缺点)

    • 字符之间没有语义相似度;
      受无关词/停用词影响大;
      受语序影响大
  • Jaccard相似度(元素的交集/元素的并集)、

  • 词向量(基于窗口;解决了语义相似的问题;文本转为数字,计算cos值来判断相似度)

  • 深度学习-表示型(问题匹配问题比较合适,因为二者都是问题,所以转向量也方便)
    两个话使用同一个Encoder向量 语义相似的score = 1,类似二分类

    • (Triplet Loss):
      使得相同标签的样本再Embedding空间尽量接近(anchor和positive接近 away negative)
    • loss = max((D(p,a)-D(p,n)+margin,0)
    • 优点:训练好的模型可以对知识库内的问题计算向量,在实际查找过程中,只对输入文本做一次向量化
    • 缺点:在向量化的过程中不知道文本重点
  • 深度学习-交互型

    • 输入一句话,但是两个样本拼接,利用attention机制来判断是否匹配(Q&A拼接去学习)
    • 优点:通过对比把握句子重点
    • 缺点:每次计算需要都需要两个输入
  • 对比学习

    • 输入一个样本,通过函数把样本改动,但还是相似,得到两个相似样本,进行bertEconder,pooling操作
  • 海量向量查找:

    • 可以用开源写好的库^^ Faiss Pinecore
    • 避免遍历,避免和所有向量做距离计算(空间切割KD树,Kmeans方式切割)

代码

实现一个智能问答demo

"""
配置参数信息
"""
Config = {
    "model_path": "./output/",
    "model_name": "model.pt",
    "schema_path": r"D:\NLP\video\第八周\week8 文本匹配问题\data\schema.json",
    "train_data_path": r"D:\NLP\video\第八周\week8 文本匹配问题\data\data.json",
    "valid_data_path": r"D:\NLP\video\第八周\week8 文本匹配问题\data\valid.json",
    "vocab_path": r"D:\NLP\video\第七周\data\vocab.txt",
    "model_type": "rnn",
    # 正样本比例
    "positive_sample_rate": 0.5,
    "use_bert": False,
    # 文本向量大小
    "char_dim": 32,
    # 文本长度
    "max_len": 20,
    # 词向量大小
    "hidden_size": 128,
    # 训练 轮数
    "epoch_size": 15,
    # 批量大小
    "batch_size": 32,
    # 训练集大小
    "simple_size": 300,
    # 学习率
    "lr": 1e-3,
    # dropout
    "dropout": 0.5,
    # 优化器
    "optimizer": "adam",
    # 卷积核
    "kernel_size": 3,
    # 最大池 or 平均池
    "pooling_style": "max",
    # 模型层数
    "num_layers": 2,
    "bert_model_path": r"D:\NLP\video\第六周\bert-base-chinese",
    # 输出层大小
    "output_size": 2,
    # 随机数种子
    "seed": 987
}


load.py j加载数据文件

"""
数据加载
"""
import json
from collections import defaultdict
import random

import torch
import torch.utils.data as Data
from torch.utils.data import DataLoader
from transformers import BertTokenizer


# 获取字表集
def load_vocab(path):
    vocab = {}
    with open(path, 'r', encoding='utf-8') as f:
        for index, line in enumerate(f):
            word = line.strip()
            # 0留给padding位置,所以从1开始
            vocab[word] = index + 1
        vocab['unk'] = len(vocab) + 1
    return vocab


# 数据预处理 裁剪or填充
def padding(input_ids, length):
    if len(input_ids) >= length:
        return input_ids[:length]
    else:
        padded_input_ids = input_ids + [0] * (length - len(input_ids))
        return padded_input_ids


# 文本预处理
# 转化为向量
def sentence_to_index(text, length, vocab):
    input_ids = []
    for char in text:
        input_ids.append(vocab.get(char, vocab['unk']))
    # 填充or裁剪
    input_ids = padding(input_ids, length)
    return input_ids


class DataGenerator:
    def __init__(self, data_path, config):
        # 加载json数据
        self.load_know_base(config["train_data_path"])
        # 加载schema 相当于答案集
        self.schema = self.load_schema(config["schema_path"])
        self.data_path = data_path
        self.config = config
        if self.config["model_type"] == "bert":
            self.tokenizer = BertTokenizer.from_pretrained(config["bert_model_path"])
        self.vocab = load_vocab(config["vocab_path"])
        self.config["vocab_size"] = len(self.vocab)
        self.train_flag = None
        self.load_data()

    def __len__(self):
        if self.train_flag:
            return self.config["simple_size"]
        else:
            return len(self.data)

    # 这里需要返回随机的样本
    def __getitem__(self, idx):
        if self.train_flag:
            # return self.random_train_sample()  # 随机生成一个训练样本
            # triplet loss:
            return self.random_train_sample_for_triplet_loss()
        else:
            return self.data[idx]

    # 针对获取的文本 load_know_base = {target : [questions]} 做处理
    # 传入两个样本 正样本为相同target数据 负样本为不同target数据
    # 训练集和验证集不一致
    def load_data(self):
        self.train_flag = self.config["train_flag"]
        dataset_x = []
        dataset_y = []
        self.knwb = defaultdict(list)
        if self.train_flag:
            for target, questions in self.target_to_questions.items():
                for question in questions:
                    input_id = sentence_to_index(question, self.config["max_len"], self.vocab)
                    input_id = torch.LongTensor(input_id)
                    # self.schema[target] 下标 把每个question转化为向量append放入一个target下
                    self.knwb[self.schema[target]].append(input_id)
        else:
            with open(self.data_path, encoding="utf8") as f:
                for line in f:
                    line = json.loads(line)
                    assert isinstance(line, list)
                    question, target = line
                    input_id = sentence_to_index(question, self.config["max_len"], self.vocab)
                    # input_id = torch.LongTensor(input_id)
                    label_index = torch.LongTensor([self.schema[target]])
                    # self.data.append([input_id, label_index])
                    dataset_x.append(input_id)
                    dataset_y.append(label_index)
                self.data = Data.TensorDataset(torch.tensor(dataset_x), torch.tensor(dataset_y))
        return

    # 加载知识库
    def load_know_base(self, know_base_path):
        self.target_to_questions = {}
        with open(know_base_path, encoding="utf8") as f:
            for index, line in enumerate(f):
                content = json.loads(line)
                questions = content["questions"]
                target = content["target"]
                self.target_to_questions[target] = questions
        return

    # 加载schema 相当于答案集
    def load_schema(self, param):
        with open(param, encoding="utf8") as f:
            return json.loads(f.read())

    # 训练集随机生成一个样本
    # 依照一定概率生成负样本或正样本
    # 负样本从随机两个不同的标准问题中各随机选取一个
    # 正样本从随机一个标准问题中随机选取两个
    def random_train_sample(self):
        target = random.choice(list(self.knwb.keys()))
        # 随机正样本:
        # 随机正样本
        if random.random() <= self.config["positive_sample_rate"]:
            if len(self.knwb[target]) <= 1:
                return self.random_train_sample()
            else:
                question1 = random.choice(self.knwb[target])
                question2 = random.choice(self.knwb[target])
                # 一组
                # dataset_x.append([question1, question2])
                # # 二分类任务 同一组的question target = 1
                # dataset_y.append([1])
                return [question1, question2, torch.LongTensor([1])]
        else:
            # 随机负样本:
            p, n = random.sample(list(self.knwb.keys()), 2)
            question1 = random.choice(self.knwb[p])
            question2 = random.choice(self.knwb[n])
            # dataset_x.append([question1, question2])
            # dataset_y.append([-1])
            return [question1, question2, torch.LongTensor([-1])]

    # triplet_loss随机生成3个样本 锚样本A, 正样本P, 负样本N
    def random_train_sample_for_triplet_loss(self):
        target = random.choice(list(self.knwb.keys()))
        # question1锚样本 question2为同一个target下的正样本 question3 为其他target下样本
        question1 = random.choice(self.knwb[target])
        question2 = random.choice(self.knwb[target])
        question3 = random.choice(self.knwb[random.choice(list(self.knwb.keys()))])
        return [question1, question2, question3]


# 用torch自带的DataLoader类封装数据
def load_data_batch(data_path, config, shuffle=True):
    dg = DataGenerator(data_path, config)
    if config["train_flag"]:
        dl = DataLoader(dg, batch_size=config["batch_size"], shuffle=shuffle)
    else:
        dl = DataLoader(dg.data, batch_size=config["batch_size"], shuffle=shuffle)
    return dl


if __name__ == '__main__':
    from config import Config

    Config["train_flag"] = True
    # dg = DataGenerator(Config["train_data_path"], Config)
    dataset = load_data_batch(Config["train_data_path"], Config)
    # print(len(dg))
    # print(dg[0])
    for index, dataset in enumerate(dataset):
        input_id1, input_id2, input_id3 = dataset
        print(input_id1)
        print(input_id2)
        print(input_id3)


main.py 主方法

import torch
import os
import random
import os
import numpy as np
import logging
from config import Config
from model import TorchModel, choose_optimizer, SiameseNetwork
from loader import load_data_batch
from evaluate import Evaluator

# [DEBUG, INFO, WARNING, ERROR, CRITICAL]


logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

"""
模型训练主程序
"""
# 通过设置随机种子来复现上一次的结果(避免随机性)
seed = Config["seed"]
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)


def main(config):
    # 保存模型的目录
    if not os.path.isdir(config["model_path"]):
        os.mkdir(config["model_path"])
    # 加载数据
    dataset = load_data_batch(config["train_data_path"], config)
    # 加载模型
    model = SiameseNetwork(config)
    # 是否使用gpu
    if torch.cuda.is_available():
        logger.info("gpu可以使用,迁移模型至gpu")
        model.cuda()
    # 选择优化器
    optim = choose_optimizer(config, model)
    # 加载效果测试类
    evaluator = Evaluator(config, model, logger)
    for epoch in range(config["epoch_size"]):
        epoch += 1
        logger.info("epoch %d begin" % epoch)
        epoch_loss = []
        # 训练模型
        model.train()
        for batch_data in dataset:
            if torch.cuda.is_available():
                batch_data = [d.cuda() for d in batch_data]
            # x, y = dataiter
            # 反向传播
            optim.zero_grad()
            s1, s2, s3 = batch_data  # 输入变化时这里需要修改,比如多输入,多输出的情况
            # 计算梯度
            loss = model(s1, s2, s3)
            # 梯度更新
            loss.backward()
            # 优化器更新模型
            optim.step()
            # 记录损失
            epoch_loss.append(loss.item())
        logger.info("epoch average loss: %f" % np.mean(epoch_loss))
        # 测试模型效果
        acc = evaluator.eval(epoch)
    # 可以用model_type model_path epoch 三个参数来保存模型
    model_path = os.path.join(config["model_path"], "epoch_%d_%s.pth" % (epoch, config["model_type"]))
    torch.save(model.state_dict(), model_path)  # 保存模型权重
    return


if __name__ == "__main__":
    from config import Config

    Config["train_flag"] = True
    main(Config)

    # for model in ["cnn"]:
    #     Config["model_type"] = model
    #     print("最后一轮准确率:", main(Config), "当前配置:", Config["model_type"])

    # 对比所有模型
    # 中间日志可以关掉,避免输出过多信息
    # 超参数的网格搜索
    # for model in ["gated_cnn"]:
    #     Config["model_type"] = model
    #     for lr in [1e-3, 1e-4]:
    #         Config["learning_rate"] = lr
    #         for hidden_size in [128]:
    #             Config["hidden_size"] = hidden_size
    #             for batch_size in [64, 128]:
    #                 Config["batch_size"] = batch_size
    #                 for pooling_style in ["avg"]:
    #                     Config["pooling_style"] = pooling_style
    # 可以把输出放入文件中 便于查看
    #                     print("最后一轮准确率:", main(Config), "当前配置:", Config)



evaluate.py 评估模型文件

"""
模型效果测试
"""
import torch
from loader import load_data_batch


class Evaluator:
    def __init__(self, config, model, logger):
        self.config = config
        self.model = model
        self.logger = logger
        # 选择验证集合
        config['train_flag'] = False
        self.valid_data = load_data_batch(config["valid_data_path"], config, shuffle=False)
        config['train_flag'] = True
        self.train_data = load_data_batch(config["train_data_path"], config)
        self.stats_dict = {"correct": 0, "wrong": 0}  # 用于存储测试结果

    def eval(self, epoch):
        self.logger.info("开始测试第%d轮模型效果:" % epoch)
        self.stats_dict = {"correct": 0, "wrong": 0}  # 清空前一轮的测试结果
        self.model.eval()
        self.knwb_to_vector()
        for index, batch_data in enumerate(self.valid_data):
            if torch.cuda.is_available():
                batch_data = [d.cuda() for d in batch_data]
            input_id, labels = batch_data  # 输入变化时这里需要修改,比如多输入,多输出的情况
            with torch.no_grad():
                test_question_vectors = self.model(input_id)  # 不输入labels,使用模型当前参数进行预测
            self.write_stats(test_question_vectors, labels)
        self.show_stats()
        return

    def write_stats(self, test_question_vectors, labels):
        assert len(labels) == len(test_question_vectors)
        for test_question_vector, label in zip(test_question_vectors, labels):
            # 通过一次矩阵乘法,计算输入问题和知识库中所有问题的相似度
            # test_question_vector shape [vec_size]   knwb_vectors shape = [n, vec_size]
            res = torch.mm(test_question_vector.unsqueeze(0), self.knwb_vectors.T)
            hit_index = int(torch.argmax(res.squeeze()))  # 命中问题标号
            hit_index = self.question_index_to_standard_question_index[hit_index]  # 转化成标准问编号
            if int(hit_index) == int(label):
                self.stats_dict["correct"] += 1
            else:
                self.stats_dict["wrong"] += 1
        return

    # 将知识库中的问题向量化,为匹配做准备
    # 每轮训练的模型参数不一样,生成的向量也不一样,所以需要每轮测试都重新进行向量化
    def knwb_to_vector(self):
        self.question_index_to_standard_question_index = {}
        self.question_ids = []
        for standard_question_index, question_ids in self.train_data.dataset.knwb.items():
            for question_id in question_ids:
                # 记录问题编号到标准问题标号的映射,用来确认答案是否正确
                self.question_index_to_standard_question_index[len(self.question_ids)] = standard_question_index
                self.question_ids.append(question_id)
        with torch.no_grad():
            question_matrixs = torch.stack(self.question_ids, dim=0)
            if torch.cuda.is_available():
                question_matrixs = question_matrixs.cuda()
            self.knwb_vectors = self.model(question_matrixs)
            # 将所有向量都作归一化 v / |v|
            self.knwb_vectors = torch.nn.functional.normalize(self.knwb_vectors, dim=-1)
        return

    def show_stats(self):
        correct = self.stats_dict["correct"]
        wrong = self.stats_dict["wrong"]
        self.logger.info("预测集合条目总量:%d" % (correct + wrong))
        self.logger.info("预测正确条目:%d,预测错误条目:%d" % (correct, wrong))
        self.logger.info("预测准确率:%f" % (correct / (correct + wrong)))
        self.logger.info("--------------------")
        return correct / (correct + wrong)

model.py

import torch
import torch.nn as nn
from torch.optim import Adam, SGD
from transformers import BertModel

"""
建立网络模型结构
"""


class TorchModel(nn.Module):
    def __init__(self, config):
        super(TorchModel, self).__init__()
        hidden_size = config["hidden_size"]
        vocab_size = config["vocab_size"] + 1
        output_size = config["output_size"]
        model_type = config["model_type"]
        num_layers = config["num_layers"]
        self.use_bert = config["use_bert"]
        self.emb = nn.Embedding(vocab_size + 1, hidden_size, padding_idx=0)
        if model_type == 'rnn':
            self.encoder = nn.RNN(input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers,
                                  batch_first=True)
        elif model_type == 'lstm':
            # 双向lstm,输出的是 hidden_size * 2(num_layers 要写2)
            self.encoder = nn.LSTM(hidden_size, hidden_size, num_layers=num_layers)
        elif self.use_bert:
            self.encoder = BertModel.from_pretrained(config["bert_model_path"])
            # 需要使用预训练模型的hidden_size
            hidden_size = self.encoder.config.hidden_size
        elif model_type == 'cnn':
            self.encoder = CNN(config)
        elif model_type == "gated_cnn":
            self.encoder = GatedCNN(config)
        elif model_type == "bert_lstm":
            self.encoder = BertLSTM(config)
            # 需要使用预训练模型的hidden_size
            hidden_size = self.encoder.config.hidden_size

        self.classify = nn.Linear(hidden_size, output_size)
        self.pooling_style = config["pooling_style"]
        self.loss = nn.functional.cross_entropy  # loss采用交叉熵损失

    def forward(self, x, y=None):
        if self.use_bert:
            # 输入x为[batch_size, seq_len]
            # bert返回的结果是 (sequence_output, pooler_output)
            # sequence_output:batch_size, max_len, hidden_size
            # pooler_output:batch_size, hidden_size
            x = self.encoder(x)[0]
        else:
            x = self.emb(x)
            x = self.encoder(x)
        # 判断x是否是tuple
        if isinstance(x, tuple):
            x = x[0]
        # 池化层
        if self.pooling_style == "max":
            # shape[1]代表列数,shape是行和列数构成的元组
            self.pooling_style = nn.MaxPool1d(x.shape[1])
        elif self.pooling_style == "avg":
            self.pooling_style = nn.AvgPool1d(x.shape[1])
        x = self.pooling_style(x.transpose(1, 2)).squeeze()

        y_pred = self.classify(x)
        if y is not None:
            return self.loss(y_pred, y.squeeze())
        else:
            return y_pred


# 定义孪生网络  (计算两个句子之间的相似度)
class SiameseNetwork(nn.Module):
    def __init__(self, config):
        super(SiameseNetwork, self).__init__()
        self.sentence_encoder = TorchModel(config)
        # 使用的是cos计算
        # self.loss = nn.CosineEmbeddingLoss()
        # 使用triplet_loss
        self.triplet_loss = self.cosine_triplet_loss

    # 计算余弦距离  1-cos(a,b)
    # cos=1时两个向量相同,余弦距离为0;cos=0时,两个向量正交,余弦距离为1
    def cosine_distance(self, tensor1, tensor2):
        tensor1 = torch.nn.functional.normalize(tensor1, dim=-1)
        tensor2 = torch.nn.functional.normalize(tensor2, dim=-1)
        cosine = torch.sum(torch.mul(tensor1, tensor2), axis=-1)
        return 1 - cosine

    # 3个样本  2个为一类 另一个一类 计算triplet loss
    def cosine_triplet_loss(self, a, p, n, margin=None):
        ap = self.cosine_distance(a, p)
        an = self.cosine_distance(a, n)
        if margin is None:
            diff = ap - an + 0.1
        else:
            diff = ap - an + margin.squeeze()
        return torch.mean(diff[diff.gt(0)])  # greater than

    # 使用triplet_loss
    def forward(self, sentence1, sentence2=None, sentence3=None, margin=None):
        vector1 = self.sentence_encoder(sentence1)
        # 同时传入3 个样本
        if sentence2 is None:
            if sentence3 is None:
                return vector1
            # 计算余弦距离
            else:
                vector3 = self.sentence_encoder(sentence3)
                return self.cosine_distance(vector1, vector3)
        else:
            vector2 = self.sentence_encoder(sentence2)
            if sentence3 is None:
                return self.cosine_distance(vector1, vector2)
            else:
                vector3 = self.sentence_encoder(sentence3)
                return self.triplet_loss(vector1, vector2, vector3, margin)

    # CosineEmbeddingLoss
    # def forward(self,sentence1, sentence2=None, target=None):
    #     # 同时传入两个句子
    #     if sentence2 is not None:
    #         vector1 = self.sentence_encoder(sentence1)  # vec:(batch_size, hidden_size)
    #         vector2 = self.sentence_encoder(sentence2)
    #         # 如果有标签,则计算loss
    #         if target is not None:
    #             return self.loss(vector1, vector2, target.squeeze())
    #         # 如果无标签,计算余弦距离
    #         else:
    #             return self.cosine_distance(vector1, vector2)
    #     # 单独传入一个句子时,认为正在使用向量化能力
    #     else:
    #         return self.sentence_encoder(sentence1)


# 优化器的选择
def choose_optimizer(config, model):
    optimizer = config["optimizer"]
    learning_rate = config["lr"]
    if optimizer == "adam":
        return Adam(model.parameters(), lr=learning_rate)
    elif optimizer == "sgd":
        return SGD(model.parameters(), lr=learning_rate)


# 定义CNN模型
class CNN(nn.Module):
    def __init__(self, config):
        super(CNN, self).__init__()
        hidden_size = config["hidden_size"]
        kernel_size = config["kernel_size"]
        pad = int((kernel_size - 1) / 2)
        self.cnn = nn.Conv1d(hidden_size, hidden_size, kernel_size, bias=False, padding=pad)

    def forward(self, x):  # x : (batch_size, max_len, embeding_size)
        return self.cnn(x.transpose(1, 2)).transpose(1, 2)


# 定义GatedCNN模型
class GatedCNN(nn.Module):
    def __init__(self, config):
        super(GatedCNN, self).__init__()
        self.cnn = CNN(config)
        self.gate = CNN(config)

    # 定义前向传播函数 比普通cnn多了一次sigmoid 然后互相卷积
    def forward(self, x):
        a = self.cnn(x)
        b = self.gate(x)
        b = torch.sigmoid(b)
        return torch.mul(a, b)


# 定义BERT-LSTM模型
class BertLSTM(nn.Module):
    def __init__(self, config):
        super(BertLSTM, self).__init__()
        self.bert = BertModel.from_pretrained(config["bert_model_path"], return_dict=False)
        self.rnn = nn.LSTM(self.bert.config.hidden_size, self.bert.config.hidden_size, batch_first=True)

    def forward(self, x):
        x = self.bert(x)[0]
        x, _ = self.rnn(x)
        return x


if __name__ == "__main__":
    from config import Config

    Config["vocab_size"] = 10
    Config["max_length"] = 4
    model = SiameseNetwork(Config)
    s1 = torch.LongTensor([[1, 2, 3, 0], [2, 2, 0, 0]])
    s2 = torch.LongTensor([[1, 2, 3, 4], [3, 2, 3, 4]])
    l = torch.LongTensor([[1], [0]])
    y = model(s1, s2, l)
    print(y)


  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值