【SCOI2007】【最小费用最大流】修车

15 篇文章 0 订阅
本文介绍了一种基于费用流算法解决特定问题的方法。该问题涉及n辆车与m个维修人员的最佳匹配,目标是最小化总的等待时间。通过构建特殊的图模型,并使用SPFA算法求解最小费用最大流,最终得到平均最小等待时间。
摘要由CSDN通过智能技术生成

需要一定思考才能建出模型的费用流。

有n辆车,m个维修人员

每辆车看作一个点u,连边s -> u,容量为1,费用为0

然后每个维修人员拆成n个点,连边u -> v容量为1费用为k * time[u][v](k表示拆分的n个点中的第k个点)实际意义为第v个维修人员在倒数第k个位置修第u辆车

最后对于所有与维修人员相关的点,连v -> t,容量为1,费用为0

做一次最小费用最大流就是最小等待时间了,题目要求平均最小时间,再除以总人数n就行了

#include<cstdio>
#include<cstring>
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxp = 100;
const int maxn = 1000;
const int maxm = 200000;
struct Edge
{
	int pos,c,d,w;
	int next;
}E[maxm];
int head[maxn],time[maxp][maxp];
int dis[maxn],pre[maxn];
int que[maxm];
bool vis[maxn];
int s,t,NE;
int n,m;
void init()
{
	freopen("bzoj1070.in","r",stdin);
	freopen("bzoj1070.out","w",stdout);
}

void add(int u,int v,int c,int w)
{
	E[NE].pos = v;E[NE].d = u;E[NE].c = c;E[NE].w = w;
	E[NE].next = head[u];head[u] = NE++;
	E[NE].pos = u;E[NE].d = v;E[NE].c = 0;E[NE].w = -w;
	E[NE].next = head[v];head[v] = NE++;
}

void readdata()
{
	scanf("%d%d",&m,&n);
	for(int i = 1;i <= n;i++)
	{
		for(int j = 1;j <= m;j++)
		{
			scanf("%d",&time[i][j]);
		}
	}
}

void build_map()
{
	memset(head,-1,sizeof(head));
	memset(E,0,sizeof(E));
	s = 0,t = n * (m + 1) + 1;
	NE = 0;
	for(int i = 1;i <= n;i++)add(s,i,1,0);
	
	for(int i = 1;i <= n;i++)
	{
		for(int j = 1;j <= m;j++)
			for(int k = 1;k <= n;k++)
				add(i,j * n + k,1,k * time[i][j]);
	}
	for(int i = n + 1;i < t;i++)add(i,t,1,0);
}

bool spfa()
{
	memset(dis,0x3f,sizeof(dis));
	memset(vis,false,sizeof(vis));
	memset(pre,-1,sizeof(pre));
	int l = 0,r = 0; 
	dis[s] = 0;
	que[r++] = s;
	vis[s] = true;
	while(l < r)
	{
		int u = que[l++];
		vis[u] = false;
		for(int i = head[u];i != -1;i = E[i].next)
		{
			int v = E[i].pos;
			if(E[i].c && dis[u] + E[i].w < dis[v])
			{
				pre[v] = i;
				dis[v] = dis[u] + E[i].w;
				if(!vis[v])
				{
					que[r++] = v;
					vis[v] = true;
				}
			}
		}
	}
	if(dis[t] == inf)return false;
	else return true;
}

int MCMF()
{
	int ret = 0;
	while(spfa())
	{
		int min = inf;
		int u = t;
		while(u != s)
		{
			if(E[pre[u]].c < min)min = E[pre[u]].c;
			u = E[pre[u]].d;
		}
		u = t;
		while(u != s)
		{
			E[pre[u]].c -= min;
			E[pre[u]^1].c += min;
			u = E[pre[u]].d;
		}
		ret += min * dis[t];
	}
	return ret;
}

void solve()
{
	build_map();
	double ans = (double)MCMF() / (double)n;
	printf("%.2lf\n",ans);
}

int main()
{
	init();
	readdata();
	solve();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值