泰勒图 Matlab代码
案例详细提供2套泰勒图画法:原始数据的泰勒图与对数据标准化后的泰勒图
笔者对此泰勒图代码进行了详细的注释,可实现点的大小和颜色的自定义设置,提供多种配色,可根据爱好自行设置喜欢的款式
-----------------------------
泰勒图本质上是巧妙的将模型的相关系数(correlation coefficient)、中心均方根误差(centered root-mean-square)和标准差(standard Deviation)三个评价指标整合在一张极坐标图上,其基于的便是三者之间构成的余弦关系。
泰勒图 Matlab代码
泰勒图是一种将模型的相关系数、中心均方根误差和标准差三个评价指标整合在一张图上的方法。在这篇文章中,我们将详细介绍泰勒图的原理和应用,并提供两种泰勒图画法的 Matlab 代码。
首先,让我们来看看泰勒图的原理。泰勒图基于的是相关系数、中心均方根误差和标准差之间的余弦关系。相关系数反映了模型预测值和观测值之间的关系密切程度,中心均方根误差反映了模型预测误差的大小和方向,标准差则反映了观测数据的分布范围。这三个指标的组合可以在一张极坐标图上呈现出来,从而更清晰地展示模型的性能。
接下来,我们将提供两种泰勒图画法的 Matlab 代码。第一种是原始数据的泰勒图,代码如下:
% load data
load('data.mat');
% calculate correlation coefficient, centered root-mean-square and
% standard deviation
R = corrcoef(pressure, prediction);
crmsd = sqrt(mean((prediction - pressure).^2));
sdev = std(pressure);
% plot Taylor diagram
figure;
sd = [0, 1, 2, 3, 4, 5];
angles = 0:pi/4:2*pi;
for i=1:numel(sd)
r = sd(i) * sdev;
x = r * cos(angles);
y = r * sin(angles);
line('XData', x, 'YData', y, 'Color', 'k', 'LineStyle', '--');
text(r+0.1, 0, num2str(sd(i)));
end
hold on;
r = crmsd;
x = r * cos(angles);
y = r * sin(angles);
line('XData', x, 'YData', y, 'LineWidth', 2);
text(r+0.1, 0, 'CRMSD');
for i=1:size(R, 1)
r = sqrt(R(i,2)^2 + (1 - R(i,2)^2) * (prediction(i)/pressure(i))^2) * sdev;
x = r * cos(angles);
y = r * sin(angles);
line('XData', x, 'YData', y, 'Marker', '.', 'MarkerSize', prediction(i)*50/max(prediction), 'Color', [0.5 0.5 0.5]);
end
第二种是对数据进行标准化后的泰勒图,代码如下:
% load data
load('data.mat');
% standardize data
pressure = pressure - mean(pressure);
pressure = pressure / std(pressure);
prediction = prediction - mean(prediction);
prediction = prediction / std(prediction);
% calculate correlation coefficient, centered root-mean-square and
% standard deviation
R = corrcoef(pressure, prediction);
crmsd = sqrt(mean((prediction - pressure).^2));
sdev = std(pressure);
% plot Taylor diagram
figure;
sd = [0, 1, 2, 3, 4, 5];
angles = 0:pi/4:2*pi;
for i=1:numel(sd)
r = sd(i) * sdev;
x = r * cos(angles);
y = r * sin(angles);
line('XData', x, 'YData', y, 'Color', 'k', 'LineStyle', '--');
text(r+0.1, 0, num2str(sd(i)));
end
hold on;
r = crmsd * sdev;
x = r * cos(angles);
y = r * sin(angles);
line('XData', x, 'YData', y, 'LineWidth', 2);
text(r+0.1, 0, 'CRMSD');
for i=1:size(R, 1)
r = sqrt(R(i,2)^2 + (1 - R(i,2)^2) * prediction(i)^2) * sdev;
x = r * cos(angles);
y = r * sin(angles);
line('XData', x, 'YData', y, 'Marker', '.', 'MarkerSize', 50, 'Color', [0.5 0.5 0.5]);
end
代码中加入了详细的注释,您可以根据自己的需求进行点的大小和颜色的自定义设置,提供多种配色,可根据爱好自行设置喜欢的款式。
总结
本文介绍了泰勒图的原理和应用,并提供了两种泰勒图画法的 Matlab 代码。通过泰勒图,我们可以更直观地展示模型的性能,并更好地了解相关系数、中心均方根误差和标准差之间的余弦关系。希望本文对您有所帮助。
相关代码,程序地址:http://lanzouw.top/664978854525.html