DFS - 树的重心

本文探讨了如何使用深度优先搜索(DFS)算法找到一棵树的重心,即删除后使剩余连通块中点数最大值最小的节点,并详细解释了实现过程与代码示例。

DFS - 树的重心

给定一颗树,树中包含n个结点(编号1~n)和n-1条无向边。

请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。

重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。

输入格式
第一行包含整数n,表示树的结点数。

接下来n-1行,每行包含两个整数a和b,表示点a和点b之间存在一条边。

输出格式
输出一个整数m,表示重心的所有的子树中最大的子树的结点数目。

数据范围
1≤n≤105

输入样例
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6

输出样例:
4

分析:

在一颗树上删去一个节点,最多分为两大部分:①、该节点的所有孩子分为多个独立集合。②、剩余其他节点。如下图,删除红色方框内的节点,分为橙色部分和绿色部分在一颗树上删去一个节点,最多分为两大部分:\\①、该节点的所有孩子分为多个独立集合。\\②、剩余其他节点。\\如下图,删除红色方框内的节点,分为橙色部分和绿色部分绿
在这里插入图片描述
绿色部分:可以通过遍历红色方框节点的所有孩子节点,递归计算各部分的数量。橙色部分:总数量减去红色方框所在分支的节点数量。绿色部分:可以通过遍历红色方框节点的所有孩子节点,递归计算各部分的数量。\\橙色部分:总数量减去红色方框所在分支的节点数量。绿

具体落实:

①、树可以用邻接表来存储。①、树可以用邻接表来存储。

②、dfs求以每个节点为根节点的子树节点数量之和。②、dfs求以每个节点为根节点的子树节点数量之和。dfs

③、全局变量ans记录连通块中节点数量的最大值的最小值。③、全局变量ans记录连通块中节点数量的最大值的最小值。ans

注意:邻接表存图,要先把表头初始化为−1。邻接表存图,要先把表头初始化为-1。1

代码:

#include<cstring>
#include<algorithm>
#include<iostream>

using namespace std;

const int N=1e5+10;

int n,e[N*2],ne[2*N],idx,h[N];
int ans=N;
bool st[N];

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

int dfs(int u)
{
    st[u]=true;
    
    int sum=1,res=0;
    for(int i=h[u];~i;i=ne[i])
    {
        int j=e[i];
        if(!st[j])
        {
            int s=dfs(j);
            res=max(res,s);
            sum+=s;
        }
    }
    
    res=max(res,n-sum);
    ans=min(ans,res);
    
    return sum;
}

int main()
{
    cin>>n;
    memset(h,-1,sizeof h);
    for(int i=0;i<n-1;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b),add(b,a);
    }
    
    dfs(1);
    
    cout<<ans<<endl;
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值