DFS - 树的重心
给定一颗树,树中包含n个结点(编号1~n)和n-1条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
输入格式
第一行包含整数n,表示树的结点数。
接下来n-1行,每行包含两个整数a和b,表示点a和点b之间存在一条边。
输出格式
输出一个整数m,表示重心的所有的子树中最大的子树的结点数目。
数据范围
1≤n≤105
输入样例
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6
输出样例:
4
分析:
在一颗树上删去一个节点,最多分为两大部分:①、该节点的所有孩子分为多个独立集合。②、剩余其他节点。如下图,删除红色方框内的节点,分为橙色部分和绿色部分在一颗树上删去一个节点,最多分为两大部分:\\①、该节点的所有孩子分为多个独立集合。\\②、剩余其他节点。\\如下图,删除红色方框内的节点,分为橙色部分和绿色部分在一颗树上删去一个节点,最多分为两大部分:①、该节点的所有孩子分为多个独立集合。②、剩余其他节点。如下图,删除红色方框内的节点,分为橙色部分和绿色部分
绿色部分:可以通过遍历红色方框节点的所有孩子节点,递归计算各部分的数量。橙色部分:总数量减去红色方框所在分支的节点数量。绿色部分:可以通过遍历红色方框节点的所有孩子节点,递归计算各部分的数量。\\橙色部分:总数量减去红色方框所在分支的节点数量。绿色部分:可以通过遍历红色方框节点的所有孩子节点,递归计算各部分的数量。橙色部分:总数量减去红色方框所在分支的节点数量。
具体落实:
①、树可以用邻接表来存储。①、树可以用邻接表来存储。①、树可以用邻接表来存储。
②、dfs求以每个节点为根节点的子树节点数量之和。②、dfs求以每个节点为根节点的子树节点数量之和。②、dfs求以每个节点为根节点的子树节点数量之和。
③、全局变量ans记录连通块中节点数量的最大值的最小值。③、全局变量ans记录连通块中节点数量的最大值的最小值。③、全局变量ans记录连通块中节点数量的最大值的最小值。
注意:邻接表存图,要先把表头初始化为−1。邻接表存图,要先把表头初始化为-1。邻接表存图,要先把表头初始化为−1。
代码:
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
const int N=1e5+10;
int n,e[N*2],ne[2*N],idx,h[N];
int ans=N;
bool st[N];
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
int dfs(int u)
{
st[u]=true;
int sum=1,res=0;
for(int i=h[u];~i;i=ne[i])
{
int j=e[i];
if(!st[j])
{
int s=dfs(j);
res=max(res,s);
sum+=s;
}
}
res=max(res,n-sum);
ans=min(ans,res);
return sum;
}
int main()
{
cin>>n;
memset(h,-1,sizeof h);
for(int i=0;i<n-1;i++)
{
int a,b;
cin>>a>>b;
add(a,b),add(b,a);
}
dfs(1);
cout<<ans<<endl;
return 0;
}