BFS(树上广搜) - 图中点的层次

BFS(树上广搜) - 图中点的层次

给定一个n个点m条边的有向图,图中可能存在重边和自环。

所有边的长度都是1,点的编号为1~n。

请你求出1号点到n号点的最短距离,如果从1号点无法走到n号点,输出-1。

输入格式
第一行包含两个整数n和m。

接下来m行,每行包含两个整数a和b,表示存在一条从a走到b的长度为1的边。

输出格式
输出一个整数,表示1号点到n号点的最短距离。

数据范围
1≤n,m≤105

输入样例:
4 5
1 2
2 3
3 4
1 3
1 4
输出样例:
1

分析:

邻 接 表 存 图 , 树 上 B F S 。 邻接表存图,树上BFS。 BFS

代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cstdio>

using namespace std;

const int N=1e5+10;

int n,m,e[N],ne[N],h[N],idx;
int d[N];

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

int bfs()
{
    memset(d,-1,sizeof d);
    queue<int> q;
    q.push(1);
    d[1]=0;
    
    while(q.size())
    {
        int u=q.front();
        q.pop();
        
        for(int i=h[u];~i;i=ne[i])
        {
            int j=e[i];
            if(d[j]==-1)
            {
                d[j]=d[u]+1;
                if(j==n) return d[j];
                q.push(j);
            }
        }
    }
    
    return -1;
}

int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    for(int i=0;i<m;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        add(a,b);
    }
    
    cout<<bfs()<<endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值