BFS(树上广搜) - 图中点的层次
给定一个n个点m条边的有向图,图中可能存在重边和自环。
所有边的长度都是1,点的编号为1~n。
请你求出1号点到n号点的最短距离,如果从1号点无法走到n号点,输出-1。
输入格式
第一行包含两个整数n和m。
接下来m行,每行包含两个整数a和b,表示存在一条从a走到b的长度为1的边。
输出格式
输出一个整数,表示1号点到n号点的最短距离。
数据范围
1≤n,m≤105
输入样例:
4 5
1 2
2 3
3 4
1 3
1 4
输出样例:
1
分析:
邻 接 表 存 图 , 树 上 B F S 。 邻接表存图,树上BFS。 邻接表存图,树上BFS。
代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cstdio>
using namespace std;
const int N=1e5+10;
int n,m,e[N],ne[N],h[N],idx;
int d[N];
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
int bfs()
{
memset(d,-1,sizeof d);
queue<int> q;
q.push(1);
d[1]=0;
while(q.size())
{
int u=q.front();
q.pop();
for(int i=h[u];~i;i=ne[i])
{
int j=e[i];
if(d[j]==-1)
{
d[j]=d[u]+1;
if(j==n) return d[j];
q.push(j);
}
}
}
return -1;
}
int main()
{
cin>>n>>m;
memset(h,-1,sizeof h);
for(int i=0;i<m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
cout<<bfs()<<endl;
return 0;
}