贪心 - Huffman树 - NOIP 2004 - 合并果子

贪心 - Huffman树 - NOIP 2004 - 合并果子

在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。

达达决定把所有的果子合成一堆。

每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。

可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。

达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。

假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为1,2,9。

可以先将1、2堆合并,新堆数目为3,耗费体力为3。

接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。

所以达达总共耗费体力=3+12=15。

可以证明15为最小的体力耗费值。

输入格式
输入包括两行,第一行是一个整数n,表示果子的种类数。

第二行包含n个整数,用空格分隔,第i个整数ai是第i种果子的数目。

输出格式
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。

输入数据保证这个值小于231。

数据范围
1≤n≤10000,
1≤ai≤20000

输入样例:
3 
1 2 9 
输出样例:
15

分析:

每 次 选 择 最 小 的 两 个 端 点 合 并 , 用 小 根 堆 维 护 即 可 。 每次选择最小的两个端点合并,用小根堆维护即可。

代码:

#include<iostream>
#include<cstdio>
#include<queue>

using namespace std;

const int N=10010;

int n;
priority_queue<int,vector<int>,greater<int>> heap;

int main()
{
    scanf("%d",&n);
    for(int i=0;i<n;i++) 
    {
        int x;
        scanf("%d",&x);
        heap.push(x);
    }
    
    int res=0;
    while(heap.size()>1)
    {
        int a=heap.top();heap.pop();
        int b=heap.top();heap.pop();
        res+=a+b;
        heap.push(a+b);
    }
    
    cout<<res<<endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值