DP - 数位DP - 计数问题 + UVA 12670 - Counting ones

DP - 数位DP - 计数问题 + UVA 12670 - Counting ones


1、计数问题

给定两个整数 a 和 b,求 a 和 b 之间的所有数字中0~9的出现次数。

例如,a=1024,b=1032,则 a 和 b 之间共有9个数如下:

1024 1025 1026 1027 1028 1029 1030 1031 1032

其中‘0’出现10次,‘1’出现10次,‘2’出现7次,‘3’出现3次等等…

输入格式
输入包含多组测试数据。

每组测试数据占一行,包含两个整数 a 和 b。

当读入一行为0 0时,表示输入终止,且该行不作处理。

输出格式
每组数据输出一个结果,每个结果占一行。

每个结果包含十个用空格隔开的数字,第一个数字表示‘0’出现的次数,第二个数字表示‘1’出现的次数,以此类推。

数据范围
0<a,b<100000000

输入样例:
1 10
44 497
346 542
1199 1748
1496 1403
1004 503
1714 190
1317 854
1976 494
1001 1960
0 0 

输出样例:
1 2 1 1 1 1 1 1 1 1
85 185 185 185 190 96 96 96 95 93
40 40 40 93 136 82 40 40 40 40
115 666 215 215 214 205 205 154 105 106
16 113 19 20 114 20 20 19 19 16
107 105 100 101 101 197 200 200 200 200
413 1133 503 503 503 502 502 417 402 412
196 512 186 104 87 93 97 97 142 196
398 1375 398 398 405 499 499 495 488 471
294 1256 296 296 296 296 287 286 286 247

分析:

按 数 位 的 长 度 来 分 析 , 计 算 1 按数位的长度来分析,计算1 1~ N 内 所 有 数 的 各 个 数 字 出 现 的 次 数 。 再 利 用 前 缀 和 思 想 来 求 给 定 区 间 [ a , b ] 中 , 各 数 字 出 现 的 次 数 。 N内所有数的各个数字出现的次数。\\再利用前缀和思想来求给定区间[a,b]中,各数字出现的次数。 N[a,b]

示例:
以 长 度 为 7 的 数 N = a b c d e f g 为 栗 , 计 算 区 间 [ 1 , a b c d e f g ] 中 各 数 字 出 现 的 次 数 : 以长度为7的数N=abcdefg为栗,计算区间[1,abcdefg]中各数字出现的次数: 7N=abcdefg[1,abcdefg]

假 设 当 前 考 虑 第 4 位 数 取 x : ① 、 前 三 位 数 取 区 间 [ 001 , a b c − 1 ] 中 的 任 意 数 。 此 时 , 无 论 e f g 三 位 取 何 值 [ 000 , 999 ] , 均 不 会 超 过 N , 根 据 乘 法 原 理 , 形 如 _   _   _   x   _   _   _ 的 数 字 共 有 ( a b c − 1 ) × 1000 种 选 择 方 案 。 假设当前考虑第4位数取x:\\①、前三位数取区间[001,abc-1]中的任意数。此时,无论efg三位取何值[000,999],均不会超过N,\\\qquad根据乘法原理,形如\_\ \_\ \_\ x\ \_\ \_\ \_的数字共有(abc-1)×1000种选择方案。 4x[001,abc1]efg[000,999]N_ _ _ x _ _ _(abc1)×1000

注意: 本 题 为 避 免 重 复 计 算 , 前 三 位 不 能 全 0 , 因 此 从 001 开 始 才 是 合 法 方 案 。 本题为避免重复计算,前三位不能全0,因此从001开始才是合法方案。 0001

② 、 前 三 位 数 取 a b c , 此 时 又 可 分 为 3 种 情 况 : Ⅰ 、 x > d , 此 时 a b c x _   _   _ > a b c d e f g , 故 总 方 案 数 为 0 。 ②、前三位数取abc,此时又可分为3种情况:\\\qquadⅠ、x>d,此时abcx\_\ \_\ \_>abcdefg,故总方案数为0。 abc3x>dabcx_ _ _>abcdefg0

Ⅱ 、 x = d , 此 时 后 三 位 的 取 值 范 围 为 [ 000 , e f g ] , 总 方 案 数 为 e f g + 1 。 \\\qquadⅡ、x=d,此时后三位的取值范围为[000,efg],总方案数为efg+1。 x=d[000,efg]efg+1

Ⅲ 、 x < d , 此 时 后 三 位 的 取 值 范 围 为 [ 000 , 999 ] , 总 方 案 数 为 1000 。 \\\qquadⅢ、x<d,此时后三位的取值范围为[000,999],总方案数为1000。 x<d[000,999]1000

方 案 总 数 及 ① + ② 的 总 数 。 方案总数及①+②的总数。 +

总结一般规律:

对 长 度 为 s 的 数 字 , 设 N = a n − 1 a n − 2 . . . a 0 , 从 后 往 前 , N 的 第 i 位 是 a i , 考 虑 第 i 位 : ① 、 前 i − 1 位 数 小 于 N 的 前 i − 1 位 数 : 记 S = a n − 1 a n − 2 . . . a i + 1 , 第 i 位 以 后 共 有 i 位 数 , 则 总 方 案 数 为 ( S − 1 ) × 1 0 i 。 对长度为s的数字,设N=a_{n-1}a_{n-2}...a_0,从后往前,N的第i位是a_i,考虑第i位:\\①、前i-1位数小于N的前i-1位数:记S=a_{n-1}a_{n-2}...a_{i+1},第i位以后共有i位数,则总方案数为(S-1)×10^i。 sN=an1an2...a0Niaiii1Ni1:S=an1an2...ai+1ii(S1)×10i

② 、 前 i − 1 位 与 N 的 前 i 位 数 相 同 : Ⅰ 、 若 第 i 位 数 恰 好 取 a i , 则 总 方 案 数 为 a i − 1 a i − 2 . . . a 0 + 1 。 ②、前i-1位与N的前i位数相同:\\\qquadⅠ、若第i位数恰好取a_i,则总方案数为a_{i-1}a_{i-2}...a_{0}+1。 i1Ni:iaiai1ai2...a0+1

Ⅱ 、 若 第 i 位 数 小 于 a i , 则 总 方 案 数 为 1 0 i 。 \\\qquadⅡ、若第i位数小于a_i,则总方案数为10^i。 iai10i

具体落实:

函 数 C o u n t 计 算 1 函数Count计算1 Count1~ N 中 各 数 字 出 现 的 次 数 。 把 N 的 每 一 位 数 取 出 存 入 数 组 中 , 从 后 往 前 ( 从 高 位 到 低 位 ) 依 次 讨 论 每 一 位 取 值 对 应 的 方 案 总 数 。 N中各数字出现的次数。把N的每一位数取出存入数组中,\\从后往前(从高位到低位)依次讨论每一位取值对应的方案总数。 NN()

注意:

最 高 位 不 能 取 0 , 因 此 当 统 计 0 出 现 的 次 数 时 , 从 次 高 位 开 始 遍 历 。 最高位不能取0,因此当统计0出现的次数时,从次高位开始遍历。 00

代码:

#include<iostream>
#include<vector>
#include<algorithm>

using namespace std;

int get(vector<int> t,int l,int r)
{
    int res=0;
    for(int i=l;i>=r;i--)
        res=res*10+t[i];
    return res;
}

int power10(int x)
{
    int res=1;
    while(x--) res*=10;
    return res;
}

int Count(int n,int x)
{
    if(!n) return 0;
    
    vector<int> V;
    while(n) V.push_back(n%10),n/=10;
    
    int res=0,s=V.size();
    for(int i=s-1-(!x);i>=0;i--)
    {
        if(i<s-1)
        {
            res+=get(V,s-1,i+1)*power10(i);
            if(!x) res-=power10(i);
        }
        
        if(V[i]==x) res+=get(V,i-1,0)+1;
        else if(V[i]>x) res+=power10(i);
    }

    return res;
}

int main()
{
    int l,r;
    while(cin>>l>>r,l||r)
    {
        if(l>r) swap(l,r);
        
        for(int i=0;i<=9;i++)
            cout<<Count(r,i)-Count(l-1,i)<<' ';
        cout<<endl;
    }
    
    return 0;
}

2、UVA 12670 - Counting ones

题意:

给 定 区 间 [ A , B ] , 要 求 区 间 中 的 所 有 数 在 二 进 制 表 示 下 , ′ 1 ′ 出 现 的 次 数 总 和 。 给定区间[A,B],要求区间中的所有数在二进制表示下,'1'出现的次数总和。 [A,B]1

数据范围:

1 ≤ A ≤ B ≤ 1 0 16 1 ≤ A ≤ B ≤ 10^{16} 1AB1016

Sample Input:
1000000000000000 10000000000000000
2 12
9007199254740992 9007199254740992

Sample Output:
239502115812196372
21
1

分析:

与 第 一 题 类 似 , 本 题 只 不 过 是 求 一 个 二 进 制 数 的 ′ 1 ′ 出 现 的 次 数 。 与第一题类似,本题只不过是求一个二进制数的'1'出现的次数。 1

注意:

由 于 本 题 数 据 范 围 较 大 , 做 移 位 运 算 时 , 要 将 整 数 1 强 制 转 化 为 l o n g   l o n g 型 。 由于本题数据范围较大,做移位运算时,要将整数1强制转化为long\ long型。 1long long

代码:

#include<iostream>
#include<vector>
#include<algorithm>

#define ll long long

using namespace std;

ll get(vector<int> t,ll l,ll r)
{
    ll res=0;
    for(int i=l;i>=r;i--)
        res=(res<<1)+t[i];
    return res;
}

ll Count(ll n)
{
    if(!n) return 0;
    
    vector<int> V;
    while(n) V.push_back(n%2),n/=2;
    
    ll res=0,s=V.size();
    for(ll i=s-1;i>=0;i--)
    {
        if(i<s-1) res+=get(V,s-1,i+1)*(1ll<<i);
        
        if(V[i]==1) res+=get(V,i-1,0)+1;
    }

    return res;
}

int main()
{
    ll l,r;
    while(cin>>l>>r)
        cout<<Count(r)-Count(l-1)<<endl;
    
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值