ST表 + 二分 - CGCDSSQ - CodeForces - 475D

ST表 + 二分 - CGCDSSQ - CodeForces - 475D

题意:

给 定 长 度 为 n 的 正 整 数 序 列 a 1 , a 2 , . . . , a n 。 给定长度为n的正整数序列a_1,a_2,...,a_n。 na1,a2,...,an

进 行 m 组 询 问 , 每 组 询 问 包 括 一 个 正 整 数 x i , i ∈ [ 1 , m ] 。 进行m组询问,每组询问包括一个正整数x_i,i∈[1,m]。 mxii[1,m]

计 算 共 有 多 少 个 区 间 [ l , r ] , 满 足 a l , a l + 1 , . . . , a r 的 最 大 公 约 数 为 x , 即 g c d ( a l , a l + 1 , . . . , a r ) = x i 。 计算共有多少个区间[l,r],满足a_l,a_{l+1},...,a_r的最大公约数为x,即gcd(a_l,a_{l+1},...,a_r)=x_i。 [l,r]al,al+1,...,arxgcd(al,al+1,...,ar)=xi

Examples

Input

3
2 6 3
5
1
2
3
4
6

Output

1
2
2
0
1

Input

7
10 20 3 15 1000 60 16
10
1
2
3
4
5
6
10
20
60
1000

Output

14
0
2
2
2
0
2
2
1
1

数据范围:

1   ≤   n   ≤   1 0 5 , 1   ≤   a i   ≤   1 0 9 , 1   ≤   m   ≤   3   ×   1 0 5 , 1   ≤   x i   ≤   1 0 9 T i m e   l i m i t : 2000 m s , M e m o r y   l i m i t : 262144 k B 1 ≤ n ≤ 10^5,1 ≤ a_i ≤ 10^9,1 ≤ m ≤ 3 × 10^5,1 ≤ x_i ≤ 10^9\\Time\ limit:2000 ms,Memory\ limit:262144 kB 1n1051ai1091m3×1051xi109Time limit:2000msMemory limit:262144kB


分析:

① 、 首 先 用 S T 表 存 储 区 间 [ l , r ] 之 间 的 正 整 数 的 最 大 公 约 数 。 ①、首先用ST表存储区间[l,r]之间的正整数的最大公约数。 ST[l,r]

② 、 对 每 一 次 询 问 x i , 暴 力 枚 举 区 间 左 端 点 L i 。 ②、对每一次询问x_i,暴力枚举区间左端点L_i。 xiLi

对 每 个 左 端 点 L i , 在 最 大 公 约 数 为 t 的 情 况 下 , 计 算 满 足 g c d ( [ L i , R ] ) = t 的 最 大 的 R 的 值 , t 初 始 为 a i = f [ L i ] [ 0 ] 。 \qquad对每个左端点L_i,在最大公约数为t的情况下,计算满足gcd([L_i,R])=t的最大的R的值,t初始为a_i=f[L_i][0]。 Litgcd([Li,R])=tRtai=f[Li][0]

则 对 最 大 公 约 数 为 t , 且 左 端 点 为 L 的 情 况 下 , 满 足 条 件 的 区 间 数 量 为 R − L + 1 。 \qquad则对最大公约数为t,且左端点为L的情况下,满足条件的区间数量为R-L+1。 tLRL+1

接 着 将 t 更 新 为 g c d ( [ L , R + 1 ] ) , 重 复 操 作 , 直 至 R > n 。 \qquad接着将t更新为gcd([L,R+1]),重复操作,直至R>n。 tgcd([L,R+1])R>n

补 充 : 第 ② 步 中 , 求 最 大 R 的 过 程 可 以 二 分 。 补充:第②步中,求最大R的过程可以二分。 R

因 为 , g c d ( a , b ) = m i n ( a , b ) 或 者 g c d ( a , b ) ≤ m i n ( a , b ) 2 , 故 g c d 最 多 变 化 l o g n 次 , 即 第 ② 步 最 多 执 行 l o g n 次 。 因为,gcd(a,b)=min(a,b)或者gcd(a,b)≤\frac{min(a,b)}{2},故gcd最多变化logn次,即第②步最多执行logn次。 gcd(a,b)=min(a,b)gcd(a,b)2min(a,b)gcdlognlogn

这 样 , 我 们 预 处 理 所 有 左 端 点 的 情 况 , 即 执 行 第 ② 步 n 次 , 用 m a p 来 统 计 每 个 最 大 公 约 数 的 满 足 条 件 的 区 间 数 量 , 这样,我们预处理所有左端点的情况,即执行第②步n次,用map来统计每个最大公约数的满足条件的区间数量, nmap

最 后 直 接 查 询 即 可 。 时 间 复 杂 度 O ( n l o g n ) 。 最后直接查询即可。时间复杂度O(nlogn)。 O(nlogn)

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>

using namespace std;

const int N=1e5+10,M=20;

int n,m;
int pow_2[M],log_2[N];
int f[N][M];   
map<int,long long> cnt;

int gcd(int a,int b)
{
    return b ? gcd(b,a%b) : a;
}

void Init()
{
    for(int i=0;i<M;i++) pow_2[i]=1<<i;
    
    log_2[0]=-1;
    for(int i=1;i<N;i++) log_2[i]=log_2[i/2]+1;
}

void get_ST()
{
    for(int i=1;i<=log_2[n];i++)   
        for(int j=1;j+pow_2[i]-1<=n;j++)
                f[j][i]=gcd(f[j][i-1],f[j+pow_2[i-1]][i-1]);
}

int query(int l,int r)
{
    int k=log_2[r-l+1];
    return gcd(f[l][k],f[r-pow_2[k]+1][k]);
}

int bin(int x,int l,int L)   //二分以x为最大公约数,左端点在L处的区间的最大右端点R
{
    int r=n;
    while(l<r)
    {
        int mid=l+r+1>>1;
        if(query(L,mid)!=x) r=mid-1;
        else l=mid;
    }
    return l;
}

void pre_solve(int L)     //统计以L为左端点的所有区间,计算所有可能的最大公约数的满足条件的区间数量
{
    int t=f[L][0],R=L;
    while(R<=n)
    {
        int last=R;
        R=bin(t,R,L);
        cnt[t]+=R-last+1;
        R++;
        t=query(L,R);
    }
}

int main()
{    
    cin>>n;
    for(int i=1;i<=n;i++) scanf("%d",&f[i][0]);
    
    Init();
    get_ST();
    for(int i=1;i<=n;i++) pre_solve(i);
    
    cin>>m;
    int x;
    for(int i=1;i<=m;i++)
    {
        scanf("%d",&x);
        printf("%lld\n",cnt[x]);
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值