Kruskal - SCOI 2005 繁忙的都市 - 洛谷 P2330
城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。
城市C的道路是这样分布的:
城市中有 n 个交叉路口,编号是 1∼n,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。
这些道路是 双向 的,且把所有的交叉路口直接或间接的连接起来了。
每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。
但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:
1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来。
2.在满足要求1的情况下,改造的道路尽量少。
3.在满足要求1、2的情况下,改造的那些道路中分值最大值尽量小。
作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。
输入格式
第一行有两个整数 n,m 表示城市有 n 个交叉路口,m 条道路。
接下来 m 行是对每条道路的描述,每行包含三个整数u,v,c 表示交叉路口 u 和 v 之间有道路相连,分值为 c。
输出格式
两个整数 s,max,表示你选出了几条道路,分值最大的那条道路的分值是多少。
数据范围
1 ≤ n ≤ 300 , 1 ≤ m ≤ 8000 , 1 ≤ c ≤ 10000 1≤n≤300, 1≤m≤8000, 1≤c≤10000 1≤n≤300,1≤m≤8000,1≤c≤10000
输入样例:
4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8
输出样例:
3 6
题意:
即 给 定 n 个 点 m 条 边 , 从 中 选 择 尽 量 少 的 边 , 使 得 n 个 点 连 通 。 即给定n个点m条边,从中选择尽量少的边,使得n个点连通。 即给定n个点m条边,从中选择尽量少的边,使得n个点连通。
每 种 选 择 方 案 的 花 费 为 选 择 的 所 有 边 中 的 最 大 边 权 。 每种选择方案的花费为选择的所有边中的最大边权。 每种选择方案的花费为选择的所有边中的最大边权。
输 出 最 少 需 要 选 择 几 条 边 , 以 及 方 案 的 花 费 。 输出最少需要选择几条边,以及方案的花费。 输出最少需要选择几条边,以及方案的花费。
分析:
无 向 连 通 图 , 至 少 需 要 n − 1 条 边 。 无向连通图,至少需要n-1条边。 无向连通图,至少需要n−1条边。
跑 一 遍 最 小 生 成 树 , 维 护 最 大 的 边 权 即 可 。 跑一遍最小生成树,维护最大的边权即可。 跑一遍最小生成树,维护最大的边权即可。
采 用 k r u s k a l 算 法 , 每 次 加 入 边 就 更 新 一 次 。 因 为 k r u s k a l 算 法 已 将 边 按 权 重 从 小 到 大 排 好 序 , 采用kruskal算法,每次加入边就更新一次。因为kruskal算法已将边按权重从小到大排好序, 采用kruskal算法,每次加入边就更新一次。因为kruskal算法已将边按权重从小到大排好序,
故 最 后 一 次 更 新 的 就 是 最 小 生 成 树 中 的 最 大 边 权 。 故最后一次更新的就是最小生成树中的最大边权。 故最后一次更新的就是最小生成树中的最大边权。
代码:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=8010;
int n,m;
int p[N];
struct edge
{
int u,v,w;
bool operator < (const edge &t) const
{
return w<t.w;
}
}E[N];
int Find(int x)
{
if(p[x]!=x) return p[x]=Find(p[x]);
return p[x];
}
int kruskal()
{
sort(E,E+m);
int ans;
for(int i=0;i<m;i++)
{
int pu=Find(E[i].u),pv=Find(E[i].v);
if(pu!=pv)
{
p[pu]=pv;
ans=E[i].w;
}
}
return ans;
}
int main()
{
cin>>n>>m;
for(int i=0;i<m;i++) cin>>E[i].u>>E[i].v>>E[i].w;
for(int i=1;i<=n;i++) p[i]=i;
int res=kruskal();
cout<<n-1<<' '<<res<<endl;
return 0;
}