Tarjan(边的双连通分量) - Redundant Paths - POJ 3177
为了从F个草场中的一个走到另一个,奶牛们有时不得不路过一些她们讨厌的可怕的树。
奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择。
每对草场之间已经有至少一条路径。
给出所有R条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量,路径由若干道路首尾相连而成。
两条路径相互分离,是指两条路径没有一条重合的道路。
但是,两条分离的路径上可以有一些相同的草场。
对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路。
输入格式
第1行输入F和R。
接下来R行,每行输入两个整数,表示两个草场,它们之间有一条道路。
输出格式
输出一个整数,表示最少的需要新建的道路数。
数据范围
1 ≤ F ≤ 5000 , F − 1 ≤ R ≤ 10000 1≤F≤5000, F−1≤R≤10000 1≤F≤5000,F−1≤R≤10000
输入样例:
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
输出样例:
2
分析:
边 的 双 连 通 分 量 : 任 意 两 点 间 存 在 至 少 两 条 不 相 交 的 路 径 。 即 不 存 在 桥 。 边的双连通分量:任意两点间存在至少两条不相交的路径。即不存在桥。 边的双连通分量:任意两点间存在至少两条不相交的路径。即不存在桥。
题 意 : 在 一 个 无 向 图 中 至 少 添 加 几 条 边 , 可 以 使 得 整 个 图 是 一 个 边 的 双 连 通 图 。 题意:在一个无向图中至少添加几条边,可以使得整个图是一个边的双连通图。 题意:在一个无向图中至少添加几条边,可以使得整个图是一个边的双连通图。
t a r j a n 算 法 先 缩 点 , 那 么 在 每 个 连 通 分 量 中 , 要 使 得 各 点 之 间 连 通 , 至 少 要 存 在 一 个 环 。 tarjan算法先缩点,那么在每个连通分量中,要使得各点之间连通,至少要存在一个环。 tarjan算法先缩点,那么在每个连通分量中,要使得各点之间连通,至少要存在一个环。
有 环 就 满 足 边 双 连 通 分 量 的 定 义 。 有环就满足边双连通分量的定义。 有环就满足边双连通分量的定义。
那 么 缩 点 后 得 到 的 新 图 就 是 一 棵 树 。 那么缩点后得到的新图就是一棵树。 那么缩点后得到的新图就是一棵树。
树 中 边 均 为 原 图 中 的 桥 。 树中边均为原图中的桥。 树中边均为原图中的桥。
如何判断桥:
条 件 : d f n [ u ] < l o w [ j ] 条件:dfn[u]<low[j] 条件:dfn[u]<low[j]
即 遍 历 到 u 的 时 间 戳 要 严 格 小 于 u 的 孩 子 j 向 下 遍 历 的 最 小 时 间 戳 。 即遍历到u的时间戳要严格小于u的孩子j向下遍历的最小时间戳。 即遍历到u的时间戳要严格小于u的孩子j向下遍历的最小时间戳。
也 就 是 从 j 向 下 遍 历 , 无 论 如 何 都 不 会 返 回 到 u 。 如 下 图 : 也就是从j向下遍历,无论如何都不会返回到u。如下图: 也就是从j向下遍历,无论如何都不会返回到u。如下图:
大
圆
表
示
连
通
分
量
,
小
圆
表
示
点
。
大圆表示连通分量,小圆表示点。
大圆表示连通分量,小圆表示点。
缩 点 后 的 树 中 , 根 到 叶 子 节 点 是 不 存 在 两 条 不 相 交 的 路 径 的 。 缩点后的树中,根到叶子节点是不存在两条不相交的路径的。 缩点后的树中,根到叶子节点是不存在两条不相交的路径的。
因 此 我 们 需 要 在 叶 子 节 点 与 其 父 节 点 之 间 新 建 一 条 边 。 因此我们需要在叶子节点与其父节点之间新建一条边。 因此我们需要在叶子节点与其父节点之间新建一条边。
结论: ⌊ 叶 子 的 数 量 2 ⌋ \lfloor\frac{叶子的数量}{2}\rfloor ⌊2叶子的数量⌋
缩 点 后 , 我 们 统 计 度 为 1 的 连 通 分 量 的 数 量 即 可 。 缩点后,我们统计度为1的连通分量的数量即可。 缩点后,我们统计度为1的连通分量的数量即可。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=5010, M=20010;
int n,m;
int e[M],ne[M],h[N],idx;
int stk[N],top;
bool is_bridge[M];
int dfn[N],low[N],timestamp;
int id[N],dcc_cnt;
int d[N];
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void tarjan(int u,int from)
{
dfn[u]=low[u]=++timestamp;
stk[++top]=u;
for(int i=h[u];~i;i=ne[i])
{
int j=e[i];
if(!dfn[j])
{
tarjan(j,i);
low[u]=min(low[u],low[j]);
if(dfn[u]<low[j])
is_bridge[i]=is_bridge[i^1]=true;
}
else if(i!=(from ^ 1))
low[u]=min(low[u],dfn[j]);
}
if(dfn[u]==low[u])
{
++dcc_cnt;
int y;
do
{
y=stk[top--];
id[y]=dcc_cnt;
}while(y!=u);
}
}
int main()
{
scanf("%d%d",&n,&m);
memset(h,-1,sizeof h);
int a,b;
for(int i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
add(a,b),add(b,a);
}
tarjan(1,-1);
for(int i=0;i<idx;i++)
if(is_bridge[i])
d[id[e[i]]]++;
int cnt=0;
for(int i=1;i<=dcc_cnt;i++)
if(d[i]==1)
cnt++;
printf("%d\n",(cnt+1)/2);
return 0;
}