Floyd + 离散化 - K-th Path - CodeForces 1196F

Floyd + 离散化 - K-th Path - CodeForces 1196F

题意:

给 定 一 个 n 个 点 , m 条 边 的 无 向 带 权 图 , 给定一个n个点,m条边的无向带权图, nm

计 算 出 图 中 任 意 两 点 之 间 路 径 长 度 的 第 k 小 值 。 计算出图中任意两点之间路径长度的第k小值。 k

输入:

首 行 包 括 三 个 正 整 数 : n , m , k , 首行包括三个正整数:n,m,k, n,m,k

接 着 m 行 输 入 m 条 边 , 包 括 u , v , w , 表 示 点 u 和 v 之 家 有 一 条 权 值 为 w 的 无 向 边 。 接着m行输入m条边,包括u,v,w,表示点u和v之家有一条权值为w的无向边。 mmu,v,wuvw

输出:

一 个 正 整 数 , 表 示 第 k 短 路 。 一个正整数,表示第k短路。 k

Examples
Input

6 10 5
2 5 1
5 3 9
6 2 2
1 3 1
5 1 8
6 5 10
1 6 5
6 4 6
3 6 2
3 4 5

Output

3

Input

7 15 18
2 6 3
5 7 4
6 5 4
3 6 9
6 7 7
1 6 4
7 1 6
7 2 1
4 3 2
3 2 8
5 3 6
2 5 5
3 7 9
4 1 8
2 1 1

Output

9

数据范围:

2 ≤ n ≤ 2 ⋅ 1 0 5 , n − 1 ≤ m ≤ m i n ( n ( n − 1 ) 2 , 2 ⋅ 1 0 5 ) , 1 ≤ k ≤ m i n ( n ( n − 1 ) 2 , 400 ) 2≤n≤2⋅10^5,n−1≤m≤min(\frac{n(n−1)}{2},2⋅10^5),1≤k≤min(\frac{n(n−1)}{2},400) 2n2105n1mmin(2n(n1),2105)1kmin(2n(n1),400)

1 ≤ u , v ≤ n , 1 ≤ w ≤ 1 0 9 , u ≠ v 1≤u,v≤n , 1≤w≤10^9, u≠v 1u,vn,1w109,u=v


分析:

要 求 任 意 两 点 之 间 的 距 离 , 自 然 想 到 考 虑 F l o y d 算 法 , 要求任意两点之间的距离,自然想到考虑Floyd算法, Floyd

但 是 本 题 点 数 n ≤ 2 × 1 0 5 , 非 常 不 友 好 。 但是本题点数n≤2×10^5,非常不友好。 n2×105

但 是 k ≤ 400 , 而 我 们 要 求 k 短 路 ( 任 意 点 对 之 间 的 距 离 ) , 事 实 上 仅 需 考 虑 前 k 短 的 边 就 够 了 , 但是k≤400,而我们要求k短路(任意点对之间的距离),事实上仅需考虑前k短的边就够了, k400k()k

因 此 , 我 们 先 将 m 条 边 排 序 , 然 后 取 出 前 m i n ( k , m ) 条 边 , 将 这 些 边 的 端 点 离 散 化 ( 不 超 过 800 个 点 ) , 因此,我们先将m条边排序,然后取出前min(k,m)条边,将这些边的端点离散化(不超过800个点), mmin(k,m)(800)

然 后 在 这 些 点 中 跑 f l o y d 即 可 。 最 后 输 出 前 k 短 路 。 然后在这些点中跑floyd即可。最后输出前k短路。 floydk

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<algorithm>

#define ll long long

using namespace std;

const int N=2e5+10, M=2e5+10, inf=0x3f3f3f3f;

int n,m,k;
struct edge
{
    int u,v,w;
    bool operator < (const edge &t) const
    {
        return w<t.w;
    }
}E[M];
ll d[810][810],ans[N],cnt;
int ver[N],idx;
bool st[N];

void build()
{
    int u,v,w;
    for(int i=0;i<min(k,m);i++)
    {
        u=E[i].u, v=E[i].v, w=E[i].w;
        if(!st[u]) st[u]=true, ver[u]=++idx;
        if(!st[v]) st[v]=true, ver[v]=++idx;
        d[ver[u]][ver[v]]=d[ver[v]][ver[u]]=w;
    }
}

void floyd()
{
    for(int k=1;k<=idx;k++)
        for(int i=1;i<=idx;i++)
            for(int j=1;j<=idx;j++)
                d[i][j]=min(d[i][k]+d[k][j],d[i][j]);
    
    for(int i=1;i<=idx;i++)
        for(int j=1;j<i;j++)
            ans[cnt++]=d[i][j];
}

int main()
{
    scanf("%d%d%d",&n,&m,&k);
    int u,v,w;
    for(int i=0;i<m;i++)
    {
        scanf("%d%d%d",&u,&v,&w);
        E[i]={u,v,w};
    }
    sort(E,E+m);

    memset(d,0x3f,sizeof d);
    build();
    floyd();
    sort(ans,ans+cnt);
    
    cout<<ans[k-1]<<endl;
    
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值