这种题要先观察,列出通项。这样再有这样类似的题目你就可以得心应手了。你学会了我教的方法,再麻烦的也就变成了简单的了。
主要是计算量小。不容易出错。
0.1*0.2+0.2*0.3+0.3*0.4+....+5*5.1=(1×2+2×3+3×4+……+50×51)÷100
这样1×2+2×3+3×4+……+50×51的通项可以看成
n×﹙n+1﹚=n²+n=n²+2n+1﹣n-1=(n+1)²-n-1
1×2+2×3+3×4+……+50×51
=2²+3²+……+51²﹣1﹣2﹣3﹣……﹣50-1-1-……-1
=2²+3²+……+51²-(1+2+3+......+50)-1×50
这里需要用到自然数的平方和公式
1²+2²+...+n²=n(n+1)(2n+1)÷6
则上面的式子=51×52×103÷6-1-51×50÷2-50
=17×26×103-51×25-51
=17×26×103-51×26
=17×26×﹙103-3﹚
=17×26×100
=44200
原式=44200÷100=442