LLMzip 项目

要运行 LLMzip 项目,请按照以下步骤进行:

  1. 克隆代码库并进入目录:

    git clone https://github.com/vcskaushik/LLMzip.git
    cd LLMzip
    
  2. 创建并激活 Conda 环境:

    conda create --name llmzip python=3.8
    conda activate llmzip
    
  3. 安装依赖项:

    pip install -r requirements.txt
    
  4. 下载 LLaMA 模型权重和分词器:
    请填写 Meta AI 的申请表 以获取模型权重和分词器的下载链接。 批准后,您将收到包含下载链接的电子邮件。 编辑 download.sh 脚本,将其中的 URL 替换为您收到的链接,然后运行:

    bash download.sh
    
  5. 安装项目:
    在项目目录中运行:

    pip install -e .
    
  6. 压缩文本文件:
    使用以下命令压缩文本文件:

    torchrun --nproc_per_node 1 LLMzip_run.py \
      --ckpt_dir $TARGET_FOLDER/model_size \
      --tokenizer_path $TARGET_FOLDER/tokenizer.model \
      --win_len 511 \
      --text_file $TEXT_FILE \
      --compression_folder $COMPRESSION_FOLDER
    

    其中,$TARGET_FOLDER 是包含模型权重和分词器的文件夹路径,$TEXT_FILE 是您要压缩的文本文件路径,$COMPRESSION_FOLDER 是存储压缩结果的文件夹路径。

  7. 解压缩文件:
    要解压缩文件,请使用以下命令:

    torchrun --nproc_per_node 1 LLMzip_run.py \
      --ckpt_dir $TARGET_FOLDER/model_size \
      --tokenizer_path $TARGET_FOLDER/tokenizer.model \
      --win_len 511 \
      --text_file $TEXT_FILE \
      --compression_folder $COMPRESSION_FOLDER \
      --encode_decode 1
    

    --encode_decode 参数设置为 1 以进行解压缩操作。

请注意,LLMzip 项目依赖于 LLaMA 模型,您需要先获取模型权重和分词器。 此外,确保您的环境中已安装支持 CUDA 的 PyTorch,以充分利用 GPU 加速。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值