Caffe + Win10 + GPU + VS2013 菜鸟超详细编译安装过程

引言

现在深度学习非常火爆,以前也零星学习过一些机器学习方面的知识,但是一直没有用深度学习真正去做过什么项目,最近想用深度学习去做一些图像检测和识别方面的项目,逼迫自己去动手学习一些流行的深度学习开源框架,据说Caffe是最容易上手的,因此首先得把Caffe安装起来,本文就是纪录自己在windows环境下搭建Caffe的全过程,参考了网上一些博客,碰到过一些别人没有碰到过的坑,也避开了别人曾经碰到的坑,下面就是整个搭建过程。

1. 编译环境

操作系统:Windows10

这里写图片描述

IDE: VS2013

这里写图片描述

GPU: NVIDIA

这里写图片描述

2. 安装CUDA

Cuda是NVIDIA推出的GPU加速运算平台。 首先确认自己的显卡是Nvidia的且支持。进入官网: [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads)

这里写图片描述

到页面下方看到下图所示的下载选项,根据你的系统的环境下载相应的安装包。

这里写图片描述

此处我下载了一个最新9.1版本,如下图:

这里写图片描述

安装,直接鼠标点击就行,很简单。大概过程如下:

这里写图片描述
这里写图片描述

安装完成之后会检查Nvadia的驱动程序是否与当前windows是否兼容,如下图:

这里写图片描述
结果悲剧了,win10与下载的最新9.1版不兼容!

重新去下载Cuda_7.5版本:

这里写图片描述

下载完之后如图:

这里写图片描述

重新安装,前面的几个步骤同前,接下来出现下图:

这里写图片描述

一路点击“继续”,出现如下一系列图:

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

#3. 下载CuDNN
CuDNN其实是个压缩包,下载地址:https://developer.nvidia.com/cudnn

这里写图片描述
这里写图片描述

用邮箱就可以免费注册,注册完成之后去邮件里验证即可。如下图:

这里写图片描述

然后重新回到下载页面,此时会跳出如下的选择项:

这里写图片描述

点击之后弹出如下的选项框:

这里写图片描述

下载完之后如下图:

这里写图片描述

下载完成后,进行解压,如下图:

这里写图片描述

三个目录里的文件分别如下:

这里写图片描述
这里写图片描述
这里写图片描述

将相应的bin、include、lib分别放于自己的cuda下面的相应目录中。例如,本人电脑的cuda目录为C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v7.5,因此将刚才解压的文件放在这个目录下面的bin、include、lib文件夹下。例如将cudnn64_5.dll复制到bin目录之后:

这里写图片描述

4. 下载Caffe的源码

微软官方也移植了Caffe,在windows下面的配置会比较简单一点:https://github.com/Microsoft/caffe

这里写图片描述

下载完之后如图:

这里写图片描述

解压缩,然后打开caffe-master文件夹,然后看到一个windows文件夹,如下图:

这里写图片描述

然后继续打开windows文件夹,看到里面一个CommonSettings.props.example文件,复制出来一份,并改名字为CommonSettings.props:

这里写图片描述

用VS2013打开Caffe.sln(就到刚刚那个文件夹里面),打开效果如下:

这里写图片描述

5. 安装

右键点击libcaffe,选择编译。这个编译过程需要的时间非常久(大约30-50分钟),主要是因为Nuget会下载一些东西,例如:boost、opencv2.4.10、gflags、glog、hdf5、lmdb、LevelDB、OpenBLAS、protobuf等。如下图:

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

下载完成后会在caffe 的同级目录生成NugetPackages的文件夹,如图:

这里写图片描述

注意:之所以选择微软官方的版本,是因为在编译过程中会自动下载一些依赖库(见下图)。不用手动选择,所以非常简单方便。进入NugetPackages文件夹,里面的内容如下:

这里写图片描述

打开libcaffe的工程设置,关闭视警告为错误(即设置为No)。如果不设置的话在编译boost库的时候会由于文字编码的警告而报错。如图:

这里写图片描述

然后就在开始编译(先编译的是libcaffe),等啊等(要有耐心,千年等一回)就编译成功了。这个时候在刚刚解压出来的caffe-master文件夹下面就会应该出现一个Build的文件夹。如图:

这里写图片描述

漫长的等待,终于编译成功:

这里写图片描述

编译成功和运行需要的文件都会存放在Build\X64\Relase下面,如图:

这里写图片描述
这里写图片描述
这里写图片描述

前面已经提示是先编译的libcaffe,在solution上面右击选择属性(properties)。可以发现默认选择的是单任务,只编译libcaffe。这就是为什么之前默认先编译libcaffe。如下图:

这里写图片描述

接下来,可以选择更多的任务来编译。类似地,我们接下来也可以只选择caffe来编译,同样的要注意release和X64. 如图:

这里写图片描述

然后类似的build等待。。。发现比刚才多了几个文件,如图:

这里写图片描述

然后也编译成功啦。。。还有一些其他的需要的时候再编译。。

6. 测试

下面通过一个最简单的网络结构lenet来对刚才安装的caffe进行测试。

1) 首先去官网: http://yann.lecun.com/exdb/mnist/ 下载mnist数据集。首先进入眼帘的是:

这里写图片描述

在侧边可以看见有4个文件可以下载:

这里写图片描述

下载后解压到D:\Project\caffe-master\data\mnist,如下图所示。

这里写图片描述

(2)在caffe根目录下,新建一个create_mnist.bat,里面写入如下的脚本:

这里写图片描述

此时如果立即双击该脚本文件,会报错,因为我们还没有生成convert_mnist_data.exe 这个可执行文件,因此我们又需要执行前面类似的操作,编译convert_mnist_data 这个工程,编译完成之后,在Build\x64\Release\ 中会有如下的文件:

这里写图片描述

此时我们可以双击create_mnist.bat 这个脚本文件,仍然出错,如图:

这里写图片描述

仔细检查,原来是要在data\mnist\ 里面还需要建立两个子目录,把相应的数据文件移动到子目录里。重新双击create_mnist.bat这个脚本文件,此时如图:

这里写图片描述

在D:\Project\caffe-master\examples\mnist下面生成相应的lmdb数据文件,如图:

这里写图片描述

(3)打开D:\Project\caffe-master\examples\mnist\lenet_solver.prototxt,定位到最后一行改为solver_mode:GPU,此处我们采用GPU训练。如下图所示:

这里写图片描述

接下来我们要修改 lenet_train_test.prototxt文件,先做个备份,如图:

这里写图片描述

打开文件lenet_train_test.prototxt,将其中的source选项的引号中加入“./”,如图:

这里写图片描述

(4)在caffe根目录下,新建train_mnist.bat,然后输入如下的脚本:

这里写图片描述

保存之后如图:

这里写图片描述

然后双击运行,就会开始训练,训练完毕后会得到相应的准确率和损失率。训练如下:

这里写图片描述

到此为止,我们完成了所有的环境搭建和demo测试。

【同步本人网易博客文章】Caffe + Win10 + GPU + VS2013 菜鸟超详细编译安装过程

  • 8
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 15
    评论
### 回答1: 安装caffe-ssd-gpu在ubuntu18.04的步骤如下: 1. 安装CUDA:从Nvidia官网下载合适的CUDA安装包,按照官方文档的指引进行安装。 2. 安装依赖:运行以下命令安装所需依赖库: ``` sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev \ libopencv-dev libhdf5-serial-dev protobuf-compiler \ libgflags-dev libgoogle-glog-dev liblmdb-dev libboost-all-dev ``` 3. 下载caffe-ssd-gpu源码并编译:从Github上下载caffe-ssd-gpu的源码,按照官方文档指引进行编译编译时需要指定编译选项为GPU模式。 4. 运行测试:安装完成后,运行测试脚本,确保安装配置成功。 以上为简要步骤,具体操作请参考对应文档和官方指引。 ### 回答2: Ubuntu18.04是目前比较常见的Linux操作系统之一,而CAFFE-SSD-GPU是深度学习的一个工具。下面是安装caffe-ssd-gpu的步骤: 1. 安装CUDA和cuDNN 首先,您需要安装CUDA和cuDNN,这是运行深度学习框架所需的必备组件。下载安装CUDA和cuDNN之前,您需要查看您的图形卡的型号,以便选择正确的CUDA版本和cuDNN版本。 在下载和安装CUDA和cuDNN之前,您需要在NVIDIA的开发者网站上注册自己,并下载适用于您机器的CUDA和cuDNN版本。此外,您还需要在命令行界面中设置以下环境变量: export PATH=/usr/local/cuda-8.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH 2. 安装依赖项 在安装caffe之前,需要安装一些依赖项。您可以使用以下命令将这些依赖项安装到您的Ubuntu系统上: sudo apt-get update sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev protobuf-compiler gfortran libjpeg62 libfreeimage-dev libatlas-base-dev git python-dev python-pip libgoogle-glog-dev libbz2-dev libxml2-dev libxslt-dev libffi-dev libssl-dev libgflags-dev liblmdb-dev python-yaml python-numpy python-scipy 3. 下载和安装CAFFE 现在,您需要在您的系统上下载和安装CAFFE。从github上获取caffesource代码并进行安装: git clone https://github.com/weiliu89/caffe.git cd caffe git checkout ssd 4. 编译安装CAFFE 使用以下命令编译安装caffe: cp Makefile.config.example Makefile.config make all -j $(($(nproc) + 1)) make pycaffe 执行该命令后,您需要等待一段时间才能完成CAFFE编译。如果出现任何编译错误,请检查您的CUDA和cuDNN版本是否正确,并重新安装依赖项。 5. 使用CAFFE-SSD-GPU 现在,您已经成功地在Ubuntu18.04操作系统上安装编译CAFFE-SSD-GPU,您可以开始使用该工具来执行深度学习任务了。 总结 安装CAFFE-SSD-GPU需要充分理解linux的命令行操作。需要先确认CUDA和cuDNN已经安装,并正确设置环境变量。然后需要下载和安装CAFFE, 并最后编译安装CAFFE。在安装过程中如果存在问题,可以查看错误日志,重新检查步骤。如果对命令行操作不熟悉,则先学习linux基础操作。 ### 回答3: caffe-ssd-gpu是一种基于caffe框架的用于实现目标检测的神经网络模型,在Ubuntu18.04系统中安装caffe-ssd-gpu需要进行以下步骤: 1. 安装CUDA CUDA是NVIDIA公司推出的用于高性能计算的并行计算平台和编程模型,是使用GPU进行深度学习任务所必需的。在Ubuntu18.04上安装CUDA需要首先确认自己的显卡型号,并选择合适的CUDA版本进行安装。可以在NVIDIA官网上下载相应的CUDA安装包,也可以通过命令行方式进行安装。在安装过程中注意要按照提示完成相应的配置和设置。 2. 安装cuDNN cuDNN是用于深度神经网络的GPU加速库,也是必需的组件之一。在安装过程中同样需要确认CUDA的版本和自己的显卡型号,并下载相应的cuDNN安装包进行安装。 3. 安装依赖包 在安装caffe-ssd-gpu前需要先安装几个依赖包,包括protobuf、opencv、boost等。可以通过命令行方式进行安装,例如: ``` sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev ``` 4. 下载caffe-ssd-gpu源码 可以在GitHub上找到caffe-ssd-gpu的源码,下载后解压到自己想要的目录下。 5. 编译安装caffe-ssd-gpu 进入caffe-ssd-gpu源码目录下,执行以下命令: ``` cd caffe-ssd-gpu mkdir build cd build cmake .. make all -j8 make install ``` 其中,make all -j8表示使用8个线程进行编译,提高编译速度。make install表示安装编译好的caffe-ssd-gpu库文件和可执行文件。 6. 测试安装是否成功 可以尝试运行caffe-ssd-gpu自带的测试程序,检查安装是否成功。在源码目录下执行以下命令: ``` ./build/tools/caffe time --model=models/VGGNet/VOC0712/SSD_300x300_ft/deploy.prototxt --gpu=0 ``` 这条命令会测试caffe-ssd-gpuGPU上执行推断的速度,如果没有问题,则说明安装成功。 需要注意的是,在安装过程中可能会遇到各种问题,例如依赖包的版本不兼容、CUDA和cuDNN的配置出错等等。这时候需要耐心调试错误,逐个解决问题,才能确保caffe-ssd-gpu能够正常运行。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nk_wavelet

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值