双倍经验题
manacher/palindromic tree
对于manacher的话显然回文串的长度最多只有n种,对于每个奇数长度的位置显然长度为1,3,5.....r[i]的串的个数都+1,区间加减什么的差分一下前缀和搞一搞就好了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
#define rep(i,l,r) for(int i=l;i<=r;i++)
#define per(i,r,l) for(int i=r;i>=l;i--)
#define mmt(a,v) memset(a,v,sizeof(a))
const int N=1000000+5;
const int p=19930726;
typedef long long ll;
char s[N<<1],t[N];
int r[N<<1],n;
ll cnt[N],k;
void manacher(){
int m=n<<1|1;
rep(i,1,m)
if(i&1)s[i]='#';
else s[i]=t[i>>1];
int id,mx=0;
rep(i,1,m){
if(mx>i)r[i]=min(mx-i,r[2*id-i]);
else r[i]=1;
while(i-r[i]>=1&&i+r[i]<=m&&s[i-r[i]]==s[i+r[i]])r[i]++;
if(~r[i]&1)cnt[(r[i]>>1)]++;
if(i+r[i]>mx)mx=i+r[i],id=i;
}
}
ll qmul(ll a,ll b){
ll ans=1;
for(;b;b>>=1,a=a*a%p)if(b&1)ans=ans*a%p;
return ans;
}
int solve(){
manacher();
ll ans=1;
per(i,n,1){
cnt[i]+=cnt[i+1];
if(cnt[i]<=k){
k-=cnt[i];
(ans*=qmul(2*i-1,cnt[i]))%=p;
}else (ans*=qmul(2*i-1,k))%=p,k=0;
if(!k)return ans;
}
return -1;
}
int main(){
//freopen("a.in","r",stdin);
scanf("%d%lld",&n,&k);
scanf("%s",t+1);
printf("%d\n",solve());
return 0;
}
回文树就是裸题了,lazytag打一打,逆序更新一下就好了(由于我比较懒就没基数排序QAQ结果就是nlogn了,好像慢了5倍左右)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
#define rep(i,l,r) for(int i=l;i<=r;i++)
#define per(i,r,l) for(int i=r;i>=l;i--)
#define mmt(a,v) memset(a,v,sizeof(a))
const int N=1000000+5;
const int p=19930726;
typedef long long ll;
ll qmul(ll a,ll b){
ll ans=1;
for(;b;b>>=1,a=a*a%p)if(b&1)ans=ans*a%p;
return ans;
}
struct Node{
int len,suf,ch[26];
ll sum;
bool operator < (const Node &x)const{
return len>x.len;
}
}tr[N];
int last,node;
void init(){last=node=2;tr[tr[tr[2].suf=1].suf=1].len=-1;}
char s[N];
void add(int i){
int cur=last,c=s[i]-'a';
while(s[i-tr[cur].len-1]!=s[i])cur=tr[cur].suf;
if(!tr[cur].ch[c]){
tr[last=++node].len=tr[cur].len+2;tr[cur].ch[c]=last;
int tmp=tr[cur].suf;
while(s[i-tr[tmp].len-1]!=s[i])tmp=tr[tmp].suf;
tr[last].suf=tr[last].len==1?2:tr[tmp].ch[c];
}
last=tr[cur].ch[c];tr[last].sum++;
}
int n;
ll k;
int solve(){
ll ans=1;
rep(i,1,node){
if(tr[i].len<=0)continue;
if(~tr[i].len&1)continue;
if(tr[i].sum<=k)
(ans*=qmul(tr[i].len,tr[i].sum))%=p,k-=tr[i].sum;
else (ans*=qmul(tr[i].len,k))%=p,k=0;
if(!k)return ans;
}
return -1;
}
int main(){
//freopen("a.in","r",stdin);
scanf("%d%lld %s",&n,&k,s+1);
init();
rep(i,1,n)add(i);
//rep(i,1,node)printf("%d\n",tr[i].len);
per(i,node,1)tr[tr[i].suf].sum+=tr[i].sum;
sort(tr+1,tr+1+node);
printf("%d\n",solve());
return 0;
}