智算菩萨
大家好,我是智算菩萨,一名热衷于探索计算机程序和人工智能前沿领域的爱好者。在代码的海洋里,我如同一位航行者,不断追寻着技术的灯塔,致力于将复杂的问题抽丝剥茧,用算法的智慧点亮创新的火花。
我对编程语言有着浓厚的兴趣,擅长python语言的实战编程,特别是喜欢深度学习和计算机视觉领域。
在算法与数据结构的森林里,我享受解谜的乐趣,无论是深度优先搜索的深度探索,还是动态规划的优雅求解,都让我感受到计算机科学的魅力所在。
QQ1248693038,欢迎交流学习分享!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2025通用ChatGPT Agent架构综述:从工具调用、工作流编排到可观测与安全闭环
回看2025年的通用ChatGPT Agent架构,不难发现其“稳定内核”并不神秘:它是一套把LLM从语言生成器升级为决策器的系统工程方法。底层是可交互环境与工具集合,中间是显式编排与状态管理,上层是可观测、可评测、可治理的产品化闭环。工具调用让Agent获得行动能力,工作流图让复杂控制流显式化,可观测与评测让系统具备持续优化的可能,而安全与权限机制则为能力放大设置了必要的边界。原创 2025-12-21 20:38:25 · 614 阅读 · 0 评论 -
AI能否可持续:从“三支柱”到“可持续AI目标体系”的理论框架与核算逻辑
在严格意义上,可持续首先是一个系统概念:如果一个系统在时间上无法维持自身,或其维持方式必然破坏支撑它的外部条件,那么它就不可持续。将可持续拆成环境、经济、社会三支柱的意义,不是为了把讨论变成三份清单,而是为了把“单指标最优”转化为“多约束可行”。三支柱思想强调,如果只把资源投向其中一根支柱,哪怕这一根支柱被打造得极致强壮,另外两根支柱的脆弱也会在关键时刻让系统整体倒塌;因此“优先级排序”往往不是解决方案,真正的难点是以系统方法在三者之间做权衡并保持底线。原创 2025-12-21 20:09:06 · 604 阅读 · 0 评论 -
Gemini 3 Flash深度解析:Google推出的最新一代快速高效AI模型详尽性能评测报告
Google的Gemini系列模型的发展历程反映了当代LLM技术发展的总体趋势。从Gemini 2.5系列开始,Google就推出了不同层级的模型,包括功能强大但成本较高的Pro版本,以及速度快但能力相对较弱的Flash版本。Gemini 2.5系列虽然在当时获得了不少关注,但随着竞争对手的不断发展,其性能优势逐渐被侵蚀。到了Gemini 3时代,Google对其模型架构进行了根本性的改进。原创 2025-12-19 08:29:03 · 749 阅读 · 0 评论 -
内容审核与文本安全技术综述:检测、过滤与对齐
检测质量高度依赖数据。毒性/仇恨/冒犯语言检测领域形成了一批经典数据集,但它们的标签体系差异很大:例如 OLID(OffensEval)强调“是否冒犯—冒犯类型—目标对象”三层结构;HateXplain 在“hate/offensive/normal”三分类之外,还提供目标群体与人类标注的 rationale span;RealToxicityPrompts 则不做离散标签,而是用毒性分数来研究“模型续写时的毒性退化”。ACL 汇编。原创 2025-12-14 16:56:14 · 690 阅读 · 0 评论 -
从对话系统到对话式智能体:对话式AI发展综述与2025年前沿整合
对话式AI研究的一个基本规律是:系统形态往往被“可获得的数据结构”所塑造。任务型对话需要结构化状态与动作,因此MultiWOZ这类数据集把信念状态与对话动作标注出来;开放域对话强调个性一致性与主题连贯,因此PersonaChat把人格设定作为对话条件;知识驱动对话强调证据,因此Wizard of Wikipedia把检索到的Wikipedia段落纳入对话过程;情感与同理心对话则需要情绪场景与情感标签,因此EmpatheticDialogues以“情绪情境”为对话基底。原创 2025-12-19 16:08:41 · 1084 阅读 · 0 评论 -
【理论讲解】深度多任务学习:概念体系、方法谱系与跨领域建模逻辑
在深度多任务学习语境里,“任务(task)”并不等价于某个行业应用,也不等价于某个数据集名字;更通用的理解是:任务是一类从输入空间到输出空间的映射问题,它对应一套数据分布、标签定义、评价指标与损失函数。把任务形式化有两个好处:第一,它让“任务相关性”不再停留在直觉层面,而可以通过输出语义、标注噪声、数据采样机制、甚至梯度相似性等角度去讨论;第二,它让多任务学习自然落到一个多分布、多损失的联合优化框架里,便于统一推导模型结构与训练策略。原创 2025-12-20 22:47:47 · 577 阅读 · 0 评论 -
音乐生成模型综述:从符号作曲到音频域大模型、评测体系与产业化趋势
回看音乐生成的技术史,会发现每一次“质变”几乎都来自表征与评测的共同演进:有了更合适的表示(REMI、neural codec token、latent diffusion),模型才学得动;有了更可复现的基准(MusicCaps)与更工程化的指标(FAD、对齐分数、人类偏好实验范式),社区才知道该往哪儿优化 (arXiv而当音乐生成走向产业化,训练数据许可、版权合作与平台限制会把评测体系从“学术比较”推向“治理工具”:你不仅要证明模型更好听,还要证明它更可控、更可解释、更可追溯、更合规、更可部署。原创 2025-12-14 13:04:37 · 667 阅读 · 0 评论 -
可解释人工智能:概念谱系、方法体系、评估范式与大模型时代的新议题
可解释人工智能(XAI)研究综述了机器学习模型解释的关键问题与方法体系。随着复杂模型在医疗、司法等高风险领域的应用,解释需求从性能评估扩展到决策依据、公平性等维度。文章系统梳理了解释方法的两大路线:透明模型设计与后验解释技术,包括LIME、SHAP等局部解释方法,以及反事实解释、数据归因等新兴方向。原创 2025-12-14 16:31:22 · 597 阅读 · 0 评论 -
走向场景,走向融合:2025年末国产大模型的平台化竞赛与Agent新范式
把 2025 年 12 月的国产大模型放在一起看,你会发现它们大致沿着两条主线同时推进:一条是平台型厂商把模型做成可持续交付、可治理、可运维的“底座系统”(典型如腾讯云式规格化、华为式平台化、字节式工程化产品套件);另一条是创新与开源阵营把“推理 + 工具 + 长程任务”推到极致,让模型更像一个能自主完成工作的智能体(典型如 DeepSeek 的思考模式体系、Kimi 的“模型即 Agent”、智谱把多模态与 Function Calling 融合)。腾讯云。原创 2025-12-13 21:35:08 · 953 阅读 · 0 评论 -
从试错学习到安全进化:强化学习重塑自动驾驶决策与控制
在场景 2 中,Stanley 在最大偏差上表现最佳,但 RL 控制器在 RMS 误差方面依然保持接近甚至优于传统控制器,说明经过合理奖励设计与训练,RL 可以在保证安全和舒适的同时达到工程可用的控制精度。随着 RL、模仿学习、多智能体系统与形式化验证等多个方向的持续推进,可以预期未来的自动驾驶系统很可能采用“经典控制 + 学习控制 + 规则约束”深度融合的架构,在保持安全可控的前提下充分发挥强化学习在复杂决策问题上的优势。在行为规划与变道决策中,则更关注碰撞率、最小时距、平均车速与通过时间等。原创 2025-12-07 20:37:01 · 1204 阅读 · 0 评论 -
检索增强生成(RAG)技术原理深度解析:突破大模型知识边界的范式革命
RAG的基本理念简洁而深刻:当语言模型需要回答一个问题或完成一项任务时,不是仅依赖其内部参数存储的知识,而是首先从外部知识库中检索相关文档或信息片段,然后将这些检索到的上下文与原始问题一起提供给语言模型,从而生成更加准确、可信且具有时效性的回答。一个精心设计的提示应该清晰地区分原始查询和检索到的上下文,明确指示模型如何利用这些信息,并提供适当的格式要求。具体而言,检索器和知识库文档都通过预训练的嵌入模型转换为向量,当接收到查询时,系统将查询也转换为向量,然后在向量空间中查找与查询向量最接近的文档向量。原创 2025-12-13 23:07:13 · 982 阅读 · 0 评论 -
计算机视觉技术驱动下的智能油藏建模与数据同化方法体系研究
计算机视觉技术正深刻重塑油藏建模与数据同化的方法论体系,其核心贡献在于将传统依赖人工经验的解释流程转化为自动化、可重复、可量化的计算过程[1]。在静态表征方面,深度学习实现了从微观孔隙到宏观构造的多尺度智能解译,数字岩石物理中分割精度达87% IoU,岩相分类准确率超93%,断层检测F1分数0.91,这些量化指标标志着技术成熟度已进入工业化试用阶段[8][11][14]。原创 2025-12-10 21:48:52 · 1117 阅读 · 0 评论 -
AI在智能制造中的落地:从预测维护到自适应生产调度
从最新的研究与实践来看,“预测维护”和“自适应生产调度”正在成为智能制造中最先跑通闭环的两个核心场景:前者通过对设备健康的前瞻性预测,帮助企业减少非计划停机、优化备件与维护资源;后者通过对复杂生产系统的实时决策优化,使工厂能够更好地应对订单波动、设备故障和多目标约束。更重要的是,越来越多的研究与项目不再将二者视为孤立模块,而是尝试构建“设备健康—生产调度—供应链”三者联动的一体化架构。Nature在技术层面,深度学习、强化学习、多智能体系统、图神经网络和注意力机制等方法,为建模复杂工业系统提供了强大工具;原创 2025-12-07 19:39:41 · 1005 阅读 · 0 评论 -
精子形态学分析中的深度学习技术研究与应用《Deep learning-based approach for sperm morphology analysis》文献精读
精子形态学分析在男性不育症的诊断中占据重要地位,而这一领域从传统人工评估向自动化智能分析的转变是一个循序渐进的过程。传统机器学习方法虽然在某些方面取得了进步,但其固有的局限性——特别是特征工程的手工设计、非线性建模能力的不足、泛化能力的欠缺——使得它难以满足现代医学诊断的高精度需求。深度学习的出现和发展为精子形态学的自动分析提供了全新的可能性。通过自动化的特征学习、强大的非线性建模、端到端的多任务学习等特性,深度学习在精子的分割和分类任务上都展现了显著的优势。原创 2025-12-06 11:21:08 · 966 阅读 · 0 评论 -
深度学习在软件工程领域的系统性研究综述:理论、方法与实践
代码摘要生成旨在为代码片段生成简洁的自然语言描述,帮助开发者快速理解功能。早期神经方法采用编码器-解码器框架,编码器将代码序列压缩为固定维度向量,解码器基于此生成摘要。CODE-NN首次将LSTM与注意力机制结合用于C#和SQL代码摘要,注意力权重揭示生成每个摘要词时关注的代码位置。然而,固定向量瓶颈限制了长代码片段的摘要质量。Transformer架构的引入彻底改变了这一领域。编码器通过自注意力机制捕捉代码标记间的全局依赖,解码器通过编码器-解码器注意力动态关注相关代码部分。原创 2025-12-06 12:26:59 · 1132 阅读 · 0 评论 -
皮格马利翁效应视角下的人工智能发展:文化叙事、政策规制与技术演化
本文主要基于 T. J. Mateo Sanguino 发表于的文献《The Pygmalion effect in AI: influence of cultural narratives and policies on technological development》进行综合性总结与归纳,可供读这篇文献的研究者参考。原创 2025-12-05 10:09:56 · 1200 阅读 · 0 评论 -
2025年量子人工智能:从理论探索到应用潜力分析
目录第一章 引言第二章 基础知识2.1 量子计算基础概念:比特、量子比特与量子态2.2 人工智能与机器学习基础2.3 量子与AI的交叉机理第三章 量子机器学习方法3.1 量子支持向量机(QSVM)3.2 量子最近邻(Quantum k-Nearest Neighbors)3.3 量子主成分分析(Quantum PCA)第四章 量子神经网络架构及其训练4.1 量子神经网络的概念4.2 量子神经网络的典型架构4.3 QNN的训练难点与对策第五章 量子优化方法在AI中的应用5.1 量子近似优化算法(QAOA)5.原创 2025-12-03 15:30:30 · 1647 阅读 · 0 评论 -
深度学习在教育数据挖掘(EDM)中的方法体系:从任务建模到算法范式的理论梳理与总结
教育场景的任务看似众多,但在工程上,常被归并到若干“可监督/可排序/可决策”的问题模版中。为了避免概念漂浮,可先把四类主线场景用统一结构描述:数据从哪里来、核心要预测什么、特征长什么样、常用技术是什么。下表给出一份面向落地的“场景—用户行为—关键特征—技术主线”对应关系(译写自一份公开梳理的汇总表)。场景用户典型行为常见关键特征(示例)主要技术主线(示例)知识追踪(Knowledge Tracing)做题、作业、测验、练习题目/知识点 ID,答题正确性,时间间隔,题目难度,学习时长等。原创 2025-12-06 12:59:30 · 1194 阅读 · 0 评论 -
U-Net :生成式 AI 基石骨干网络的系统梳理与理论解析
从最初面向医学图像分割的卷积 U 形网络,到今天支撑 Stable Diffusion、AudioLDM、MagicVideo、DreamFusion、DreamPose 等多模态生成系统的核心骨干,U-Net 已经从一个“应用模型”转变为一个通用生成基础架构。编码–解码结构、跳跃连接、归一化、注意力与残差块的有机组合,使它既能在图像/视频/音频等连续模态中提供细节友好的多尺度表示,又能在与 Transformer、扩散、GAN、自回归等范式的融合中保持良好的计算效率与训练稳定性。原创 2025-12-05 11:10:49 · 980 阅读 · 0 评论 -
自监督学习技术综述:从预训练到统一表征
自监督学习是一种介于监督学习和无监督学习之间的学习范式。与监督学习依赖人工标注的标签不同,自监督学习通过设计预训练任务,从数据本身挖掘监督信息。其核心思想可以概括为:通过解决一个由数据自身生成的“代理任务”(Pretext Task),来驱动模型学习到对下游任务有用的“通用表征”(Representation)。例如,在图像领域,可以通过随机遮盖图像的一部分,然后训练模型去预测被遮盖的内容;在自然语言处理领域,可以随机遮盖句子中的某些单词,让模型去预测这些被遮盖的词。原创 2025-12-04 11:18:57 · 1089 阅读 · 0 评论 -
AI与人类协作新范式:增强智能而非替代智能
尽管近两年关于人机协作的实证研究已经给出了令人鼓舞的结果,但“增强智能”作为一个系统性的范式仍处于早期阶段,仍有许多重要问题有待深入。其一,需要更多跨任务、跨职业的人机协作大规模实验。目前的研究多集中在写作、编程和客服这些容易在线化、易度量的任务上,而在医疗、教育、制造等复杂环境中,协作的效果和风险模式可能完全不同。例如,在医疗影像诊断中,人机协作是否能稳定提高诊断准确率、减少漏诊?在人类教师与 AI 教学助手共同参与的课堂中,学生长期学习效果如何变化?这些都需要精心设计的随机对照实验与长期追踪研究。原创 2025-12-03 13:04:52 · 839 阅读 · 0 评论 -
2025年AI对就业市场的影响:岗位替代与技能升级的博弈
当ChatGPT在2023年1分钟内生成会议纪要、当Midjourney替代设计师完成初稿草图、当DeepSeek横空出世全面接入各领域应用时,一个不可否认的事实摆在每个职场人士面前:人工智能正在以前所未有的速度重塑就业市场的基本格局。这不再是某些前瞻性研究中的假设性预测,而是2025年正在发生的真实经济现象。根据麦肯锡全球研究院的最新报告,AI已直接影响全球47%的工作场景[1],这一比例较两年前的数据呈现指数级增长。原创 2025-12-02 13:47:10 · 1704 阅读 · 0 评论 -
长上下文建模突破:从32K到百万token的技术路径分析
Qwen3-32B 与 Llama3-Gradient 等模型的实验表明,在只用极少量额外训练(不到总预训练数据 0.01%)的情况下,配合合适的 RoPE 调整,可以把原本 8K–32K 的模型可靠地推到 100K–1M 上下文,并在 NIAH 等任务上保持相当不错的 needle recall。更微妙的是,上下文窗口不再只是“一个数字”,背后包含了不同的技术路线:有的通过位置编码外推硬顶到 100 万,有的通过多窗口+缓存+压缩把“逻辑上下文”延伸到远超单窗口的范围。原创 2025-12-02 09:59:32 · 1033 阅读 · 0 评论 -
2025年Sora类视频生成模型架构剖析:时空编码与扩散机制
综观 2024–2025 年的视频生成领域,Sora 类模型在架构和理论上的核心突破可以概括为三点:第一,通过 3D VAE 或类似结构的“视频压缩网络”,将高维视频数据映射到紧凑的潜空间表示,在这一表示上进行扩散建模,使得超大规模视频生成成为可能;原创 2025-12-02 09:10:09 · 1286 阅读 · 0 评论 -
《多模态理解的新战场:为什么 2025 年大家都在卷“视频 + 3D + 语音”》
回到文章标题的那句话——“为什么 2025 年大家都在卷‘视频 + 3D + 语音’?——现在你大概已经有了自己的答案。因为这是一个同时被技术、市场和产品逻辑三重推动的必然结果:视频是现实世界最丰富的数据载体,3D 是下一代空间计算与 XR 的基础设施,语音是人类最自然的交互方式;而 GPT-5.1、Claude Opus 4.5、Gemini 3 这些最新一代通用多模态模型,恰恰提供了一个可以把这三者统一起来的推理与决策大脑。原创 2025-12-01 15:38:48 · 1208 阅读 · 0 评论 -
“把 PDF 丢给模型”之前:向量化、分块、索引这些工程细节别忽略
回到本文标题,“把 PDF 丢给模型”听上去轻松,但要在现实复杂的企业环境中让模型真正“看懂 PDF 并给出可靠答案”,必须正视一系列工程问题:PDF 本身是为显示而非理解设计的格式,其解析需要综合版面、字体、结构等信息;分块策略直接决定了检索的“信息颗粒度”,从 Chroma 的评估到 MoG 的多粒度检索,都充分说明了粒度选择对 RAG 效果的巨大影响;嵌入模型的选择既关系到语义表达能力,也关系到多语言支持、长文本处理与部署成本;BentoML。原创 2025-12-01 20:25:15 · 787 阅读 · 0 评论 -
《自动驾驶与大模型融合新趋势:端到端感知-决策一体化架构分析》
从规则工程到大模型,从模块堆叠到端到端一体化。过去依赖工程师“穷举规则”的时代,已经无法支撑未来复杂城市交通与全球化扩张的需求;而以大模型为核心、端到端感知-决策一体化的架构,则在可扩展性、泛化能力和迭代效率上展现出巨大的潜力。特斯拉 FSD V12/13 用大规模端到端模型在量产车上完成了“从 perception-heavy 到 behavior-heavy”的范式转变;UniAD、DriveGPT4 等研究工作证明了,在学术基准数据集和模拟环境中,端到端一体化可以显著提升整体闭环表现;原创 2025-12-01 16:12:46 · 822 阅读 · 0 评论 -
多智能体系统卷土重来:让一群 AI 合作是不是更靠谱?
回到本文标题提出的问题:“多智能体系统卷土重来:让一群 AI 合作是不是更靠谱?” 从本文梳理的历史与数据可以看到,在交通、能源、物流等复杂系统里,多智能体早已用实实在在的 25% 等级的等待时间降低、40% 的旅行时间节省、数十个百分点的能耗与成本下降证明了自己。MDPI) 在 LLM 时代,这种优势正逐步扩展到知识密集与决策密集的行业,市场报告中不断抬升的采用比例和增长曲线,则表明多智能体已经从学术边缘走向商业核心。然而,多智能体并非万灵药。原创 2025-11-30 22:55:47 · 913 阅读 · 0 评论 -
大规模语音与语音对话模型:从 ASR/TTS 到情感与意图理解
本文从大规模语音与语音对话模型出发,回顾了 ASR 与 TTS 的发展脉络,重点讨论了自监督语音基础模型、Whisper 式弱监督大模型,以及基于 SUPERB/Dynamic-SUPERB 的统一评测框架。在此基础上,我们进一步分析了语音情感识别与意图理解在对话系统中的地位和技术路径,并结合工程实践探讨了云-边协同架构、数据与隐私保护、A/B 实验评估等落地问题。可以看到,大规模语音模型的演进趋势与 NLP 十分相似:从任务特定模型走向统一基础模型,从单一模态走向多模态、从静态离线推理走向实时交互。原创 2025-12-01 21:21:28 · 644 阅读 · 0 评论 -
多模态大模型的系统性剖析:从文本-图像到视频-3D的统一表征
多模态大模型的发展历程,本质上是一条不断“统一表征”的路线:从最早的文本-图像对比学习,到视觉语言助手,再到跨音频、视频、3D 的统一嵌入和统一自回归模型,人类正在用一个又一个高维向量空间,把世界的多种感知形式折叠在一起。原创 2025-11-25 23:02:38 · 1357 阅读 · 0 评论 -
AI+安全的双刃剑:大模型在网络攻防、漏洞挖掘与防御中的最新进展
人工智能技术的指数级演进正在重塑全球数字安全格局。2024年至2025年间,以OpenAI的o3模型、DeepSeek-R1、Anthropic的Claude 4.5为代表的第二代大语言模型(Large Language Models, LLMs)展现出前所未有的推理能力与复杂任务处理水平,其上下文窗口扩展至百万级token,思维链(Chain of Thought, CoT)推理深度显著增强,多智能体协同架构日趋成熟。这一技术跃迁并非简单的性能线性提升,而是引发了网络安全领域从底层方法论到顶层架构的系统性原创 2025-11-27 09:09:25 · 1161 阅读 · 0 评论 -
AI挖矿技术全景解析:从智能勘探到自主开采的2025年度技术演进与产业变革
随着全球关键矿产资源需求激增与开采难度加剧,人工智能(AI)技术正在重塑矿业全生命周期。本文系统综述了2025年AI挖矿技术的最新进展,涵盖从地质勘探、资源评估到自主开采、安全监控的完整技术链条。基于Elsevier 2025年发表的最新研究成果及IEEE会议前沿动态,本文深入分析了深度学习、强化学习、计算机视觉等核心技术在矿物识别、品位预测、设备维护等场景的应用机制。研究数据显示,AI技术已使勘探成功率提升45%,设备停机时间减少35%,整体运营效率提高40%以上。原创 2025-11-28 10:37:10 · 1553 阅读 · 0 评论 -
对话机器人已成基础设施:高并发场景下的多租户对话服务架构设计
本文将从基础设施视角出发,系统剖析高并发多租户对话服务的架构设计范式,结合2024-2025年最新开源实践与产业级解决方案,深入探讨流量调度、状态管理、服务治理、安全隔离与成本优化的全栈技术路径,为构建可支撑百万级并发、具备弹性伸缩能力的工业化对话平台提供方法论与实践参考。具体而言,系统为每个租户注入独特的身份标识向量与分类标签,在模型推理时通过注意力机制隔离不同租户的语义空间,既避免了数据泄露风险,又实现了GPU资源的细粒度复用。追求低延迟需要资源预留与热点缓存,却又与多租户共享的初衷相悖。原创 2025-11-27 09:52:56 · 768 阅读 · 0 评论 -
GPU 不够用怎么办?大模型在异构算力(CPU/NPU/FPGA)上的部署与调度
异构算力作为一种计算范式,已从理论走向实践,尤其在LLM部署中扮演关键角色。它强调硬件资源的异质性和协同性,通过抽象层屏蔽底层差异,实现无缝任务分配。2025年的技术进展显示,异构系统已在华为昇腾、AMD Ryzen AI和Intel Habana等平台上落地,这些平台将CPU、NPU和FPGA融合成统一加速器,显著提升了LLM的部署灵活性。不同于GPU的“黑箱”优化,异构算力更注重可编程性和适应性,例如FPGA的比特流重配置能根据模型版本动态调整电路拓扑,从而支持从BERT到Grok-4的多样化架构。原创 2025-11-26 16:05:13 · 1126 阅读 · 0 评论 -
强人工智能的三大核心能力:通用性、自治性与自我反思
在关于强人工智能的讨论中,人们往往容易被“是否超过人类”“何时到来 AGI”这类宏大问题所吸引,而忽略了那些真正可以在当下工程实践中推进的关键能力。本文尝试从通用性、自治性与自我反思三大核心能力出发,结合近期开源大模型、Agent 框架以及自反思机制等方面的研究与实践,构建出一幅相对清晰的能力地图。通用性让智能体能够在多任务、多模态、多场景中保持一致而稳健的表现,是强人工智能的“地基”;自治性让智能体从被动工具转变为主动执行者,是强人工智能“活起来”的关键;原创 2025-11-24 08:23:57 · 194 阅读 · 0 评论 -
强人工智能的计算需求到底有多恐怖?从算力、数据到算法复杂度
回到本文开头的问题:“强人工智能的计算需求到底有多恐怖?”从算力的角度看,OpenAI 在 2018 年画出的那条“每 3.4 个月翻一番”的曲线已经足够惊心动魄,而 2018 年之后的前沿模型发展在相当长时间里基本沿着这条曲线向上狂飙,直到近几年才因算法效率提升、硬件供应约束和投资风险等多重因素而略微放缓节奏。OpenAI。原创 2025-11-25 10:49:31 · 1001 阅读 · 0 评论 -
强人工智能 vs 深度学习:为什么现有大模型还不算 Strong AI?
回到标题中的问题:为什么现有大模型还不算 Strong AI?简单的回答是,因为它们在通用性、自治性和心灵属性三个核心维度上都还远远没有达到 Strong AI 所要求的水平;复杂一点的回答是,因为我们在讨论“强人工智能”时,其实同时在谈三件彼此相关但不完全重合的事情:可计算性与算法边界、认知架构与世界模型、意识与主观体验。大模型无疑在“算法能力”和“任务表现”这两个方面给出了堪称震撼的成绩单,让很多原本遥不可及的应用成为现实;但这并不意味着我们已经跨越了从“强工具”到“强心灵”的那道鸿沟。原创 2025-11-24 14:47:05 · 466 阅读 · 0 评论 -
强人工智能的理论基石:从图灵机到心灵哲学
在 1950 年那篇经典论文中,图灵并没有直接回答“机器能否思考”这个问题,而是坦率地指出,“思考”一词本身过于模糊,与其争论定义,不如换一个可操作的问题。他提出的“模仿游戏”设想了一个三方参与的对话场景:一个人类提问者,通过文本终端与两个隐藏的应答者交流,其中一个是人,另一个是机器,如果提问者在足够长时间内无法可靠地区分两者,那么图灵认为,我们便可以说“机器会思考”(UMBC CSEE这一转向堪称一记高明的哲学“降维打击”。原创 2025-11-24 08:51:34 · 257 阅读 · 0 评论 -
强人工智能的自我意识问题:全球工作空间、递归自我建模与意识阈值
回到本文标题中的那三个关键词——全球工作空间、递归自我建模与意识阈值——我们可以大致给出这样一幅图景:在现代意识科学与 AI 研究的交汇处,GNW 为我们提供了一个关于“信息如何变成意识内容”的全局架构,自我模型理论则为“这些内容如何以‘我的体验’的形式出现”提供了一个递归表征框架,而 Butlin 等人的指标工作则尝试把这些理论翻译成一张工程上可检验的条件表,让“意识阈值”从纯哲学假说变成一个可以用实验和代码逼近的区域。PMC在这一过程中,大语言模型的崛起起到了类似“放大镜”的作用。原创 2025-11-25 15:29:12 · 615 阅读 · 0 评论 -
构建强人工智能的技术路线图:符号主义、连接主义与混合范式
回顾符号主义、连接主义与混合范式的发展轨迹不难发现,人类在追求强人工智能的过程中,实际上在不断寻求“结构与统计”“规则与学习”“知识与数据”之间的平衡点。符号主义教会我们如何用严谨的逻辑和可解释的结构刻画智能的高层机理;连接主义展示了如何利用大规模数据和强大算力自动提取复杂模式与表征;混合范式则尝试将二者的优点汇聚为一体,为构建具备世界模型、逻辑推理、元认知与价值对齐能力的强人工智能提供更现实的工程路径。AAAI。原创 2025-11-25 10:28:25 · 1021 阅读 · 0 评论
分享