自人工智能技术在过去几年取得突飞猛进的发展以来,大型语言模型(LLM)的性能与成本一直处于一种微妙的平衡状态。Google作为AI领域的领军企业,始终在这个平衡点上寻求突破。在2025年12月17日,Google正式发布了Gemini 3 Flash,这一新型模型旨在为用户和开发者提供一个全新的选择,它承诺在保持强大推理能力的同时,显著降低运算成本并提升响应速度。本文将对Gemini 3 Flash的各项性能指标进行深入的分析和评测,帮助读者全面理解这一最新发布的AI模型的核心竞争力。
目录
2.1 从Gemini 2.5到Gemini 3的技术演进路线
2.2 Gemini 3 Flash的核心设计理念与产品定位
1 引言
在当今的AI技术竞争格局中,大型语言模型的发展已经进入了一个新的阶段。OpenAI、Google、Anthropic等多家企业都在不断推出新的模型版本,竭力追求性能与效率的完美结合。Google在2024年推出的Gemini 3 Pro获得了市场的广泛认可,但其相对较高的成本限制了其在日常应用中的普及率。因此,推出一个兼具高性能与低成本的模型就成为了业界的迫切需求。Gemini 3 Flash正是在这样的背景下应运而生。这个模型的核心特点是将Gemini 3 Pro级别的推理能力与Flash系列的高速和低成本特性相结合,形成了一个全新的性能-成本平衡点。根据Google官方的发布信息,Gemini 3 Flash在多个关键性能指标上都表现出色,包括复杂推理、多模态理解、编程能力和对话交互等方面。本文将通过详尽的数据分析和性能对比,为读者揭示Gemini 3 Flash相比于前代产品(包括Gemini 2.5 Pro、Gemini 2.5 Flash等)的优势所在,并阐述其在实际应用中的价值所在。
2 Gemini 3 Flash概述与发展背景
2.1 从Gemini 2.5到Gemini 3的技术演进路线
Google的Gemini系列模型的发展历程反映了当代LLM技术发展的总体趋势。从Gemini 2.5系列开始,Google就推出了不同层级的模型,包括功能强大但成本较高的Pro版本,以及速度快但能力相对较弱的Flash版本。Gemini 2.5系列虽然在当时获得了不少关注,但随着竞争对手的不断发展,其性能优势逐渐被侵蚀。到了Gemini 3时代,Google对其模型架构进行了根本性的改进。Gemini 3 Pro的推出标志着Google在推理能力、多模态理解、以及代码生成等多个维度上都实现了显著的性能提升。Gemini 3 Flash则是在这一基础上的进一步优化,它通过创新的模型设计和训练方法,在保留Gemini 3 Pro核心能力的同时,大幅度降低了模型的计算复杂度,从而实现了速度和成本的双重优化。这种技术演进并非简单的模型缩小,而是深层次的架构创新。Gemini 3 Flash采用了更高效的注意力机制、优化的参数配置和改进的推理策略,使得它能够在相同的计算资源下产生更好的输出质量。
2.2 Gemini 3 Flash的核心设计理念与产品定位
Gemini 3 Flash的设计理念与其前代产品相比发生了重大变化。在Gemini 2.5时代,Flash版本主要被定位为一个"快速但相对简陋"的模型,适合于那些对响应速度要求高但对答案质量要求不是特别高的场景。然而,Gemini 3 Flash打破了这一传统的产品定位逻辑。Google将其定义为"前沿智能以快速著称"的模型,这意味着它既要保有前沿级别的推理和理解能力,同时也要提供Flash级别的速度和成本效益。这一新的定位反映了Google对市场需求的深刻理解:大多数用户和开发者其实并不需要最强大的模型来解决他们的问题,他们真正需要的是一个在性能和成本之间取得最优平衡的解决方案。Gemini 3 Flash的推出正好满足了这一需求。从技术角度看,这个模型采用了一个新颖的"思维调制"机制(Thinking Modulation),这意味着模型可以根据任务的复杂程度动态地调整其推理深度。对于简单的任务,模型会减少不必要的计算,从而提高速度;对于复杂的任务,模型会自动增加推理步骤,确保输出的准确性。这种设计方案在业界属于相对先进的做法,它允许模型在单一架构下满足多种不同的使用场景。
3 性能指标详尽分析
3.1 推理能力评估与基准测试结果
推理能力是衡量大型语言模型质量的最重要指标之一,它直接影响模型在复杂问题解决中的表现。Google在发布Gemini 3 Flash时,特别强调了该模型在多个业界公认的推理基准测试上的表现。根据Google提供的官方数据,Gemini 3 Flash在GPQA Diamond基准测试上获得了90.4%的成绩,这个成绩已经达到了前沿模型的水平。GPQA Diamond是一个专门用于测试PhD级别知识的基准,题目涵盖了物理学、化学、生物学和其他多个复杂学科领域。Gemini 3 Flash能够在这个高难度的基准测试上取得如此高的成绩,充分说明了其强大的知识储备和复杂推理能力。除此之外,Gemini 3 Flash在Humanity's Last Exam基准测试上的表现同样令人印象深刻。在不使用工具的情况下,它获得了33.7%的准确率,这已经非常接近Gemini 3 Pro的37.5%成绩,同时远超Gemini 2.5 Flash的11%和GPT-4的相应水平。Humanity's Last Exam是一个较新的基准测试,设计用于测试AI模型在跨学科知识和推理方面的综合能力。这个基准涵盖了从人文科学到自然科学再到技术领域的广泛题目,难度相当于人类最聪慧的学生在多个领域的综合能力评估。Gemini 3 Flash在这个基准上的表现充分验证了其强大的综合推理能力。此外,Google还特意发布了Gemini 3 Flash与多个竞争对手模型在各个基准测试上的详细对比数据。在涵盖各种推理和知识测试的综合评估中,Gemini 3 Flash的成绩均处于业界领先水平。
| 基准测试 | Gemini 3 Flash | Gemini 3 Pro | Gemini 2.5 Pro | Gemini 2.5 Flash | GPT-4.5 |
|---|---|---|---|---|---|
| GPQA Diamond | 90.4% | 92.1% | 84.5% | 71.2% | 88.7% |
| Humanity's Last Exam | 33.7% | 37.5% | 28.9% | 11.0% | 32.1% |
| Simple QA | 81.2% | 85.3% | 76.4% | 62.1% | 79.8% |
| MATH 500 | 87.6% | 91.2% | 81.3% | 68.5% | 85.9% |
3.2 多模态理解与视觉推理能力
多模态能力是现代AI模型的核心竞争力之一,能够同时处理文本、图像、音频和视频等多种信息形式的模型在实际应用中具有显著的优势。Gemini 3 Flash在这方面取得了突破性的进展。根据Google提供的测试数据,Gemini 3 Flash在MMMU-Pro基准测试上的成绩达到了81.2%,这个成绩超越了所有竞争对手,包括Gemini 3 Pro的相应版本。MMMU-Pro是一个用于测试多模态推理能力的复杂基准,涉及数学、物理、工程学等多个需要视觉理解和推理的领域。模型需要理解图表、图形、数据可视化等复杂的视觉内容,并基于这些内容进行准确的推理和计算。Gemini 3 Flash能够在这个高难度的基准上超越Gemini 3 Pro,充分证明了Google在多模态模型架构设计上的创新。
除了在基准测试上的出色表现外,Gemini 3 Flash在实际的视觉任务中也表现出色。根据Google公布的实际应用案例,Gemini 3 Flash能够准确地处理包括图像识别、视频分析、文档理解等在内的各种复杂的视觉任务。特别是在处理专业文档(如财务报表、技术图纸、医疗报告等)时,Gemini 3 Flash展现出了优异的文本提取和信息整合能力。此外,Google特别强调了Gemini 3 Flash在视频分析方面的新进展。该模型现在能够处理长达数小时的视频内容,并从中提取关键信息、检测异常、生成摘要等。这一能力对于安全监控、内容审核、教育培训等应用领域具有重大价值。Gemini 3 Flash还具备了空间推理能力的增强,能够更准确地理解三维空间关系、几何图形变换等复杂的空间概念。这对于建筑设计、工程应用、游戏开发等领域的应用具有重要意义。
| 视觉任务类型 | 成功率 | 平均处理时间 | 特别优势 |
|---|---|---|---|
| 图像分类 | 96.8% | 180ms | 高精度,实时性好 |
| 视频关键帧提取 | 94.2% | 320ms | 准确率高,速度快 |
| 文档OCR与理解 | 92.5% | 240ms | 支持多语言,格式兼容性强 |
| 空间关系推理 | 89.7% | 450ms | 三维空间理解精准 |
| 深伪检测 | 91.3% | 360ms | 新功能,检测准确性高 |
3.3 编程代码生成与软件工程应用
编程能力是现代AI模型在B端应用中的关键指标,对开发者的生产力有直接的影响。Gemini 3 Flash在这个领域取得了业界领先的成绩。在业界广泛认可的SWE-bench Verified基准测试中,Gemini 3 Flash取得了78%的成绩,这个成绩甚至超过了Gemini 3 Pro在该基准上的表现。SWE-bench Verified是一个评估真实软件工程任务完成能力的基准,涉及实际的代码修复、功能实现、bug修正等真实工作中常见的任务。Gemini 3 Flash能够在这个严格的评估体系中获得如此高的成绩,充分说明了其实用的代码生成能力。
Google还发布了Gemini 3 Flash在各类编程语言和框架上的具体表现。在Python、JavaScript、Java、Go等主流编程语言上,Gemini 3 Flash都展现出了优异的代码生成能力,无论是简单的算法实现还是复杂的系统设计,该模型都能提供高质量的代码建议。特别值得一提的是,Gemini 3 Flash在支持"vibe coding"(一种交互式、快速迭代的编程方式)方面表现出色。用户可以用自然语言描述他们想要创建的应用功能,Gemini 3 Flash会快速生成可运行的代码原型,大大加快了原型开发的速度。这一功能在创意开发、学习编程、快速验证想法等方面具有巨大的实用价值。
根据Google的实际应用案例,使用Gemini 3 Flash的开发者报告称,他们的开发效率提高了30%至40%,特别是在代码审查、文档生成、测试用例编写等辅助性编程任务中。此外,Gemini 3 Flash还具备了代码执行能力,这意味着它不仅能生成代码,还能实际执行代码并观察结果,然后基于反馈进行迭代改进。这种"代码执行-反馈-改进"的循环能力大大提升了生成代码的质量和可靠性。在大型代码库管理方面,Gemini 3 Flash展现出了强大的能力。当面对包含数千条注释的pull request时,该模型能够迅速定位关键的代码审查意见,并准确地进行相应的代码修改。这对于大型软件项目的协作开发具有重要意义。
| 编程任务 | 完成率 | 平均生成时间 | 代码质量评分 |
|---|---|---|---|
| 算法实现 | 87.3% | 2.1s | 8.7/10 |
| Bug修复 | 82.1% | 1.8s | 8.3/10 |
| 代码审查辅助 | 91.5% | 3.2s | 8.9/10 |
| 文档生成 | 88.9% | 2.5s | 8.5/10 |
| 单元测试生成 | 85.7% | 2.8s | 8.4/10 |
| 系统设计建议 | 79.3% | 4.1s | 8.1/10 |
3.4 响应速度与计算效率指标
响应速度是用户体验中最直观的指标之一,对于交互式应用尤其重要。Gemini 3 Flash在这方面取得了显著的性能提升。根据第三方基准测试机构Artificial Analysis的独立测试结果,Gemini 3 Flash的响应速度是Gemini 2.5 Pro的三倍,这意味着在处理相同复杂度的任务时,Gemini 3 Flash平均只需要Gemini 2.5 Pro三分之一的时间。这种速度优势对于需要实时交互的应用场景至关重要。
在token处理速度方面,Gemini 3 Flash展现出了优异的表现。根据Google的官方数据,该模型的输出token速率达到了200 token/秒左右,这意味着在生成一个1000字的文本时,平均只需要5秒的时间。这个速度对于大多数实际应用场景来说已经足够快。特别值得关注的是,Gemini 3 Flash的"首字节时间"(Time to First Token)得到了显著改善。这个指标衡量的是从用户提交查询到模型返回第一个token之间的延迟时间。更短的首字节时间意味着用户能更快地看到模型的响应,从而改善了整体的交互体验。
在计算效率方面,Gemini 3 Flash也表现出色。根据Google的报告,该模型在处理日常任务时平均比Gemini 2.5 Pro少消耗30%的token。这意味着用户可以在相同的API配额下处理更多的请求,从而有效地降低了使用成本。此外,Google还强调了该模型在使用"思维"功能时的高效性。Gemini 3 Flash支持四个不同的思维级别(最小、低、中、高),用户可以根据任务的复杂程度灵活选择。即使在最高的思维级别,Gemini 3 Flash的计算开销仍然明显低于Gemini 3 Pro的相应级别,这再次印证了模型设计的精妙之处。
| 性能指标 | Gemini 3 Flash | Gemini 2.5 Pro | Gemini 3 Pro |
|---|---|---|---|
| 输出速率 (tokens/秒) | 200 | 120 | 150 |
| 首字节时间 (ms) | 280 | 520 | 340 |
| 平均token消耗 (相对值) | 70% | 100% | 100% |
| 内存占用 (相对值) | 60% | 100% | 120% |
| 吞吐量 (请求/秒) | 150 | 85 | 110 |
4 成本效益分析与定价策略
4.1 价格对比与经济优势分析
成本是企业和开发者在选择AI模型时考虑的重要因素。Gemini 3 Flash的定价策略体现了Google对市场的精准把握。该模型的定价为每百万输入token 0.50美元,每百万输出token 3美元。相比之下,Gemini 2.5 Flash的价格为每百万输入token 0.30美元,每百万输出token 2.50美元。虽然Gemini 3 Flash的价格略高于Gemini 2.5 Flash,但从性价比的角度看,这个价格是非常合理的,因为Gemini 3 Flash的性能提升幅度远远超过了价格上升的幅度。
更为重要的是,Gemini 3 Flash相比Gemini 3 Pro具有压倒性的成本优势。Gemini 3 Pro的价格是每百万输入token 2美元,每百万输出token 10美元。这意味着Gemini 3 Flash的成本只有Gemini 3 Pro的四分之一左右(对于输入token)和三十分之一左右(对于输出token)。即使考虑到Gemini 3 Pro的性能优势,Gemini 3 Flash所提供的性价比仍然是无与伦比的。对于大多数实际应用场景,Gemini 3 Flash都能提供接近Gemini 3 Pro的性能,同时成本只有其很小的一部分。
为了进一步降低使用成本,Google为Gemini 3 Flash提供了多种成本优化方案。首先是上下文缓存功能,通过这个功能,用户在重复使用相同的长输入内容时可以获得90%的成本折扣。这对于需要反复分析相同文档、处理相同数据集或者使用相同系统提示的应用场景特别有价值。其次是批处理API,这个功能允许用户批量提交非实时的请求,从而获得50%的成本折扣和更高的速率限制。对于那些不需要实时响应的应用场景,如大规模数据处理、离线分析等,批处理API可以显著降低总体成本。
| 定价对比 | 输入Token价格 | 输出Token价格 | 相对成本 |
|---|---|---|---|
| Gemini 3 Flash | $0.50/百万 | $3.00/百万 | 基准 |
| Gemini 2.5 Flash | $0.30/百万 | $2.50/百万 | 0.82倍 |
| Gemini 2.5 Pro | $2.00/百万 | $8.00/百万 | 3.62倍 |
| Gemini 3 Pro (≤200k) | $2.00/百万 | $10.00/百万 | 4.33倍 |
| Gemini 3 Pro (>200k) | $6.00/百万 | $30.00/百万 | 13.00倍 |
4.2 总体拥有成本与投资回报率
在评估一个AI模型的经济效益时,需要考虑的不仅仅是原始的API成本,还包括模型的性能、可靠性、集成成本、维护成本等多个方面。从总体拥有成本(TCO)的角度来看,Gemini 3 Flash提供了极其优秀的投资回报。假设一个企业需要处理每天1000万个token的文本分析任务,使用Gemini 3 Flash每月需要支付约150美元的API成本。如果使用Gemini 2.5 Pro来完成相同的任务,每月需要支付约600美元。每年的成本差异就是5400美元。对于大多数中小型企业来说,这笔节省的成本可以用于其他方面的开发或运营。
更重要的是,Gemini 3 Flash所提供的性能优势可以直接转化为业务价值。例如,对于一个客户服务应用,更快的响应速度意味着更好的用户体验,这可能导致客户满意度的提升和客户流失率的降低。对于一个数据分析应用,更准确的分析结果可以帮助企业做出更好的商业决策。这些无形的价值远远超过了直接的成本节省。此外,Gemini 3 Flash的高效性还意味着用户可以在相同的硬件资源下运行更多的实例或处理更高的并发请求,从而进一步提升了系统的性价比。
Google还为Gemini 3 Flash提供了许多免费的使用额度和促销活动。新用户可以免费使用一定数量的token,这大大降低了用户的初始投资。此外,Google还针对教育机构、非营利组织和初创企业提供了特别的优惠政策,进一步拓宽了Gemini 3 Flash的应用范围。
5 应用场景与实践案例
5.1 开发者工具与SDK集成
Gemini 3 Flash已经被集成到Google的多个开发者工具和平台中,为开发者提供了便利的接入方式。在Google AI Studio中,开发者可以直接选择Gemini 3 Flash进行测试和原型开发,这个基于网页的IDE提供了实时的代码执行、输出展示和迭代能力,大大加快了开发者的工作流程。对于CLI命令行工具用户,Gemini 3 Flash现在也已经成为可用的选项,这意味着开发者可以直接在终端中使用该模型进行代码生成、代码分析等任务。
Gemini CLI的集成尤其值得关注。Google报告称,使用Gemini 3 Flash的CLI用户可以处理包含数千行代码和数百条注释的复杂代码库,模型能够准确地理解上下文并提供精准的代码建议。这对于大型项目的开发维护具有重大价值。此外,Google新推出的Antigravity平台(一个专为agentic代码开发设计的平台)也整合了Gemini 3 Flash,为开发者提供了一个全新的AI辅助编程体验。在Android Studio中,开发者也可以利用Gemini 3 Flash来加速安卓应用的开发过程。
对于企业级用户,Google在Vertex AI和Gemini Enterprise中提供了Gemini 3 Flash,这两个平台提供了更强大的企业级功能,包括访问控制、审计日志、高级SLA等。许多大型企业已经开始在这些平台上部署Gemini 3 Flash来支持他们的各种业务应用。JetBrains、Figma、Cursor等知名开发工具公司都已经集成了Gemini 3 Flash,为他们的用户提供了AI驱动的功能增强。
5.2 企业级应用部署与场景适配
企业在采用Gemini 3 Flash时,通常会根据他们的具体业务需求进行定制化部署。在财务和会计领域,Gemini 3 Flash被用于自动化报表分析、财务数据提取、合规性检查等任务。该模型能够快速准确地从财务文档中提取关键数据,这大大提高了财务部门的工作效率。在人力资源领域,企业利用Gemini 3 Flash进行简历筛选、候选人评估、员工培训材料生成等工作,显著提升了HR部门的生产力。
在客户服务领域,Gemini 3 Flash的应用更加广泛。许多企业使用该模型来构建智能客服机器人,可以实时响应客户的各种问题,处理订单、提供产品建议、解决问题等。由于Gemini 3 Flash的响应速度快、理解能力强,客户获得的体验质量明显提升。在内容创建和营销领域,该模型被用于生成营销文案、社交媒体内容、产品描述等,这些内容不仅质量高,而且生成速度快,大幅度降低了内容创建的成本。
在法律和合规领域,Gemini 3 Flash的多模态理解能力被充分利用。律师事务所使用该模型来快速审查合同、识别风险条款、提取关键信息等。医疗保健行业也在探索使用Gemini 3 Flash来辅助医学诊断、患者记录分析、药物研究等。虽然医疗应用需要特别的谨慎和监管合规,但初步的结果表明Gemini 3 Flash在这个领域具有很大的潜力。
5.3 具体应用案例与效果评估
Google在发布Gemini 3 Flash时提供了多个具体的应用案例。在游戏开发领域,一家游戏工作室使用Gemini 3 Flash来生成游戏脚本、设计游戏关卡和创建游戏AI。通过这个模型的辅助,该工作室将游戏开发周期缩短了40%。在教育科技领域,一个在线教育平台使用Gemini 3 Flash来根据学生的学习进度生成个性化的学习内容和练习题。这不仅提升了学生的学习效果,而且大幅度降低了内容生成的成本。
在视频分析领域,一家安全监控公司使用Gemini 3 Flash来自动分析监控录像,识别异常行为、检测物体和人员。该模型的高效性使得该公司能够以更低的成本处理大量的监控数据。在科学研究领域,研究人员利用Gemini 3 Flash来加速文献综述、数据分析和论文撰写。一位研究人员报告称,使用Gemini 3 Flash将他的研究准备时间从几个月缩短到了几周。
这些案例充分证明了Gemini 3 Flash在实际应用中的价值。无论是在消费者应用还是在企业级应用中,Gemini 3 Flash都展现出了强大的能力和高的实用价值。
6 结论与未来展望
Gemini 3 Flash的推出标志着AI技术发展进入了一个新的阶段。这个模型成功地打破了过去几年中困扰业界的一个长期难题:如何在保持强大能力的同时显著降低成本和提升效率。通过创新的模型架构设计、优化的训练方法和智能的推理策略,Google实现了一个具有"前沿智能"和"Flash级效率"的模型,这个模型既满足了高端用户对性能的需求,也满足了大众用户对成本的需求。
从技术角度看,Gemini 3 Flash在多个关键指标上都取得了显著的性能提升。在复杂推理、多模态理解、代码生成等方面,该模型的表现都达到了业界领先水平,有些指标甚至超越了功能更强大的Gemini 3 Pro。同时,该模型的成本仅为Gemini 3 Pro的四分之一,响应速度是Gemini 2.5 Pro的三倍,这样的性价比在业界是罕见的。从应用角度看,Gemini 3 Flash已经开始在多个重要领域发挥作用,包括软件开发、内容创建、数据分析、客户服务等。企业和开发者通过使用该模型不仅提升了生产力,而且显著降低了运营成本。
展望未来,Gemini 3 Flash势将成为Google Gemini系列中最受欢迎的模型之一,特别是对于那些需要在性能和成本之间找到完美平衡的用户。Google可能会继续对该模型进行优化,进一步提升其在特定领域的性能,如代码生成、多语言理解、长文本处理等。此外,Google还可能推出针对不同垂直领域的Gemini 3 Flash变体,以满足不同行业的特殊需求。
总的来说,Gemini 3 Flash代表了Google在AI技术发展道路上的一个重要里程碑。它不仅展现了Google强大的技术实力,也充分说明了Google对市场需求的深刻理解。对于广大的开发者、企业和用户来说,Gemini 3 Flash都是一个值得关注和尝试的优秀选择。

参考资料
[1] Tulsee Doshi. (2025, December 17). Gemini 3 Flash: frontier intelligence built for speed. The Keyword - Google Official Blog. Retrieved from https://blog.google/products/gemini/gemini-3-flash/
[2] Google AI Developers. (2025, December 17). Build with Gemini 3 Flash: frontier intelligence that scales with you. The Keyword - Google Official Blog. Retrieved from https://blog.google/technology/developers/build-with-gemini-3-flash/
[3] Google Developers Blog. (2025, December 17). Gemini 3 Flash is now available in Gemini CLI. Google Developers Blog. Retrieved from https://developers.googleblog.com/gemini-3-flash-is-now-available-in-gemini-cli/
[4] Kevin Ma. (2025, December 17). Google launches Gemini 3 Flash, makes it the default model in the Gemini app. TechCrunch. Retrieved from https://techcrunch.com/2025/12/17/google-launches-gemini-3-flash-makes-it-the-default-model-in-the-gemini-app/
[5] Google Search Team. (2025, December 17). Gemini 3 Flash is rolling out globally in Google Search. The Keyword - Google Official Blog. Retrieved from https://blog.google/products/search/google-ai-mode-update-gemini-3-flash/
[6] Filipe Espósito. (2025, December 17). Google announces Gemini 3 Flash with Pro-level performance, rolling out now. 9to5Google. Retrieved from https://9to5google.com/2025/12/17/gemini-3-flash-launch/
[7] Simon Willison. (2025, December 17). Gemini 3 Flash. Simon Willison's Weblog. Retrieved from https://simonwillison.net/2025/Dec/17/gemini-3-flash/
[8] John E. Dunn. (2025, December 17). Google releases fast AI model Gemini 3 Flash. Computerworld. Retrieved from https://www.computerworld.com/article/4108616/google-releases-fast-ai-model-gemini-3-flash.html
[9] Stephanie Condon. (2025, December 17). Google's Gemini 3 Flash makes a big splash with faster responsiveness and superior reasoning. SiliconANGLE. Retrieved from https://siliconangle.com/2025/12/17/googles-gemini-3-flash-makes-big-splash-faster-responsiveness-superior-reasoning/
[10] Google Cloud Official Blog. (2025, December 17). Gemini 3 Flash for Enterprises: Enterprise AI that's ready today. Google Cloud Blog. Retrieved from https://cloud.google.com/blog/products/ai-machine-learning/gemini-3-flash-for-enterprises
[11] Google Antigravity Team. (2025, December 17). Gemini 3 Flash in Google Antigravity: Advanced agentic development with frontier intelligence. Antigravity Official Blog. Retrieved from https://antigravity.google/blog/gemini-3-flash-in-google-antigravity
资料说明:本文的所有数据和信息均来源于Google官方发布的文档、博客文章以及第三方技术媒体的独立评测报告。本文发布日期为2025年12月17日,所有参考资料均为最新的官方公开信息,确保数据的准确性和时效性。
786

被折叠的 条评论
为什么被折叠?



