================================
【文献分享】机器学习 + 分子动力学 + 第一性原理 + 电导率 + 微观结构
分享一篇关于机器学习 + 分子动力学 + 第一性原理 + 电导率 + 微观结构的文章。
感谢论文的原作者!
关键词:
1. Machine learning force field
2. Molecular dynamics
3. Solid state electrolyte
4. Sulfide glass
5. Li ionic conductivity
6. Paddle wheel effect
================================
主要内容
“硫化物基固体电解质(SEs)对于推进全固态电池(ASSBs)非常重要,主要是因为它们具有高离子电导率和强大的机械稳定性。包含混合Si和P玻璃形成体的玻璃态SEs (GSEs)因其合成工艺和防止锂枝晶生长的能力而特别有前途。然而,迄今为止,它们的玻璃态结构的复杂性阻碍了对它们的结构和性质之间关系的完全理解。这项研究引入了一种新的机器学习力场(ML-FF ),专为硫化锂基GSEs量身定制,能够探索它们的结构特征,机械性能和锂离子电导率。使用该ML-FF的分子动力学(MD)模拟,我们探索了不同组成的玻璃结构,包括二元Li2S–sis 2和Li2S–p2s 5以及三元Li2S–sis 2–p2s 5。与DFT和实验工作相比,我们的模拟在密度、弹性模量、径向分布函数和中子结构因子方面产生了一致的结果。我们的发现揭示了这些玻璃中Si和P的不同局部环境,在Li2S–sis 2中大多数Si原子处于边缘共享构型,在三元Li2S–sis 2–p2s 5组成中混合了角共享四面体和边缘共享四面体。对于300 K下的锂离子电导率,50 li2s–50 sis 2玻璃显示出最低的电导率,为2.1 mS/cm,而75 li2s–25p2s 5组合物显示出最高的电导率,为3.6 mS/cm。三元玻璃的电导率为2.6毫秒/厘米,介于两者之间。此外,对锂离子在三元玻璃中沿MD轨迹扩散的深入分析表明,扩散路径与附近的SiS4或PS4四面体的旋转动力学之间存在显著相关性。本研究中开发的ML-FF为探索广谱固态和混合前硫化物基电解质提供了重要工具。”——取自文章摘要。
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
================================
以上是我们分享的一些经验或者文章的搬运,或有不足,欢迎大家指出!
如有侵权,请联系我立马删除!
详细内容(文章题目、文章链接、附件下载)可在微 信 公 众 号:原子与分子模拟获取,欢迎大家关注。