VS Code 中如何运行Java SpringBoot的项目

在Visual Studio Code (VSCode) 中运行 Java Spring Boot 项目需要以下步骤:

目录

1. 安装必要的扩展

2. 配置环境

3. 创建或导入Spring Boot项目

使用Spring Initializr创建新项目

导入现有项目

4. 配置VSCode

配置调试环境

5. 运行和调试项目

通过命令行运行

通过Spring Boot Dashboard运行

通过调试模式运行

6. 使用Spring Boot Actuator (可选)

7. 配置任务自动化(可选)

8.总结

1. 安装必要的扩展

  • Java Extension Pack:包括所有需要的Java扩展,例如 Language Support for Java(TM) by Red HatDebugger for Java
  • Spring Boot Extension Pack:包括 Spring Boot ExtensionSpring Boot Dashboard

2. 配置环境

确保安装了以下软件:

  • Java Development Kit (JDK):推荐使用JDK 11或更高版本。
  • Maven:用于构建和管理Spring Boot项目。
  • Spring Boot CLI (可选):用于快速创建Spring Boot项目。

3. 创建或导入Spring Boot项目

使用Spring Initializr创建新项目

  1. 打开命令面板(按 Ctrl+Shift+PCmd+Shift+P)。
  2. 输入 Spring Initializr: Generate a Maven Project 并选择该选项。
  3. 按照提示选择项目的配置,例如 Group、Artifact、Dependencies 等。
  4. 选择项目生成位置并点击“生成”。
  5. VSCode会提示你打开生成的项目。

导入现有项目

  1. 直接将项目文件夹拖到VSCode窗口中。
  2. VSCode会自动检测并建议你安装所需的扩展(如果还没有安装的话)。

4. 配置VSCode

配置调试环境

  1. 打开调试视图(点击侧栏上的虫子图标或按 Ctrl+Shift+D)。
  2. 点击 create a launch.json file,然后选择 Java
  3. VSCode会生成一个 launch.json 文件,通常位于 .vscode 文件夹中,内容如下:
    {
        "version": "0.2.0",
        "configurations": [
            {
                "type": "java",
                "name": "Debug (Launch) - Current File",
                "request": "launch",
                "mainClass": "${file}"
            },
            {
                "type": "java",
                "name": "Debug (Attach)",
                "request": "attach",
                "hostName": "localhost",
                "port": 5005
            },
            {
                "type": "java",
                "name": "Debug (Launch) - MyApp",
                "request": "launch",
                "mainClass": "com.example.MyApp",
                "projectName": "my-app"
            }
        ]
    }
    
    mainClassprojectName 修改为你项目的实际值。

5. 运行和调试项目

通过命令行运行

  1. 打开终端(按 Ctrl+Cmd+)。
  2. 导航到项目根目录。
  3. 运行 mvn spring-boot:run 命令启动Spring Boot应用。

通过Spring Boot Dashboard运行

  1. 点击侧栏上的Spring图标(Spring Boot Dashboard)。
  2. 在Spring Boot Dashboard中找到你的项目。
  3. 点击播放按钮运行项目。

通过调试模式运行

  1. 设置断点:在代码行号左侧点击,添加断点。
  2. 打开调试视图(按 Ctrl+Shift+D)。
  3. 选择之前配置的 Debug (Launch) - MyApp 配置。
  4. 点击绿色的开始按钮开始调试。

6. 使用Spring Boot Actuator (可选)

如果你的项目中包含 Spring Boot Actuator,可以通过访问端点(如 /actuator/health)来监控和管理应用。

7. 配置任务自动化(可选)

你可以使用 VSCode 的任务系统来自动化构建和运行步骤:

  1. 创建 .vscode/tasks.json 文件。
  2. 添加以下配置:
    {
        "version": "2.0.0",
        "tasks": [
            {
                "label": "Run Spring Boot",
                "type": "shell",
                "command": "mvn spring-boot:run",
                "group": "build",
                "problemMatcher": [],
                "detail": "Runs the Spring Boot application"
            }
        ]
    }
    

  3. 你可以通过任务面板或快捷键运行此任务。

8.总结

以上是如何在VSCode中配置和运行Java Spring Boot项目的完整指南。安装必要的扩展,配置调试环境,并通过命令行或VSCode内置工具运行和调试Spring Boot应用,可以提升你的开发效率。

### 使用Docker和Ollama在Windows上部署DeepSeek #### 三、环境准备 为了确保顺利运行,在Windows环境中需先安装Docker Desktop。这一步骤至关重要,因为后续操作均依赖于Docker容器化平台来管理应用及其服务[^2]。 #### 四、安装并配置Docker Desktop 对于尚未安装Docker Desktop的情况,建议访问[Docker官方网站](https://www.docker.com/products/docker-desktop/)获取最新版本,并遵循官方指南完成安装过程。安装完成后启动Docker Desktop应用程序,确认其正常工作后再继续下一步的操作。 #### 五、安装Ollama 针对Windows系统的用户来说,可以通过Chocolatey包管理器快速安装Ollama工具链: ```powershell choco install ollama-cli -y ``` 此命令会自动处理所有必要的依赖关系,简化了手动设置流程中的复杂度。安装完毕之后可通过`ollama --version`指令检验是否成功安装Ollama CLI客户端[^1]。 #### 六、验证Ollama安装情况 执行如下PowerShell脚本来测试刚刚安装好的Ollama能否正常使用: ```powershell $VersionInfo = (ollama version).Trim() if ($VersionInfo.StartsWith('v')) { Write-Host "Ollama 已正确安装, 版本号为 $VersionInfo" } else { Write-Error "未能识别到有效的 Ollama 安装!" } ``` 这段代码片段能够帮助判断当前计算机上的Ollama是否处于可用状态,并显示具体的版本信息作为参考依据。 #### 七、拉取DeepSeek镜像至本地仓库 利用预先设定好的Ollama工具集可以方便地从远程服务器下载所需的AI模型文件夹,这里以DeepSeek为例展示具体做法: ```bash ollama pull deepseek-r1 ``` 上述命令将会把指定名称的预训练模型加载进来以便稍后调用使用。值得注意的是,默认情况下这些资源会被保存在一个特定位置供以后查询或更新之用。 #### 八、启动Open Web UI界面 为了让开发者更直观便捷地管理和监控整个项目进展状况,推荐采用图形化的Web控制面板形式来进行交互式开发体验。有两种方式可供选择——一种是借助Python虚拟环境下pip工具直接安装;另一种则是更加简便高效的途径即运用前面提到过的Docker技术栈创建独立的服务实例: ##### 方法A: Python Pip Install 按照提示依次输入下列语句即可顺利完成软件包导入任务: ```bash pip install open-webui ``` 随后依照屏幕指示进一步完善其余参数选项直至结束为止。 ##### 方法B: Docker Compose Setup 如果倾向于第二种解决方案,则只需复制粘贴下方给出的一行简单的docker-compose.yml定义文档内容,再配合相应端口映射规则就能立即激活在线可视化编辑功能区: ```yaml version: '3' services: webui: image: ghcr.io/your-repo/openwebui:latest ports: - "7860:7860" ``` 接着打开终端窗口键入`docker compose up -d`让后台持续运行该进程而不影响其他日常活动。 #### 九、常见错误排查技巧 在整个搭建过程中难免会出现各种意外情形阻碍进度推进,以下是几种典型的故障现象连同对应的修复措施汇总表: | 错误描述 | 解决办法 | | --- | --- | | `docker.exe not found` | 确认已经正确设置了系统变量PATH指向Docker可执行程序所在目录 | | `failed to connect...` | 尝试重启电脑使新安装的应用生效或者检查防火墙设置允许相关网络连接请求通过 | | `image cannot be pulled` | 清理缓存重新尝试pull动作,亦或是切换不同的源地址重试 | 以上就是关于怎样在Windows平台上结合Docker与Ollama两大利器共同打造属于自己的个性化DeepSeek AI服务平台的整体介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

战族狼魂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值