Python在数据科学生态系统中占据主导地位。我认为,占据主导地位的两大原因是相对容易学习和数据科学库的丰富选择。
Python是一种通用语言,因此它不仅仅用于数据科学,Web开发、移动应用程序和游戏开发也是Python的一些用例。
如果你仅将Python用于与数据科学相关的任务,那么你不必是Python专家。不过,我认为你必须掌握一些核心概念和功能。
我们在本文中介绍的内容不是特定于库的。它们可以被认为是数据科学的基础Python。即使你只使用Pandas、Matplotlib和sciket learn,也需要全面了解Python基础知识。这些库假设你熟悉Python的基础知识。
我将用几个例子简要地解释每个主题,并为大多数主题提供一个详细文章的链接。
1.函数
函数是Python中的构建块。它们接受零个或多个参数并返回一个值。我们使用def关键字创建一个函数。
这是一个简单的函数,它将两个数相乘。
def multiply(a, b): return a * b multiply(5, 4) 20
下面是另一个根据单词长度进行相关计算的示例。
def is_long(word): if len(word) > 8: return f"{word} is a long word." is_long("artificial") 'artificial is a long word.'
函数应该完成一项任务。创建一个执行一系列任务的函数违背了使用函数的目的。
我们还应该为函数指定描述性名称,这样我们就可以在不看到代码的情况下了解函数的功能。
2.位置参数和关键字参数
当我们定义一个函数时,我们指定它的参数。调用函数时,必须为其提供所需参数的值。
考虑在上一步中创建的乘法函数。它有两个参