分析特征内部数据分布与分散状况
绘制直方图
主要用户查看各分组数据的数量分布,以及各个分组数据之间的数量比较
可比较直观地看出产品质量特性的分布状态,便于判断其总体质量分布情况
可发现分布表无法发现的数据模式、样本的频率分布和总体的分布
bar函数的常用参数及其说明

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False
data = np.load('E:/python/数据、代码/第3章/01-任务程序/data/国民经济核算季度数据.npz')
name = data['columns'] #提取其中的columns数组视为数据的标签
values = data['values'] #提取其中的values数组视为数据的存在位置
label = ['第一产业','第二产业',

本文介绍了Python数据分析中,使用matplotlib库进行数据可视化的基础应用,包括绘制直方图以查看特征分布,饼图展示各部分占比,以及箱线图用于分析数据分散状况。通过直方图可以发现数据模式,饼图反映部分与整体比例,箱线图则揭示数据的分布情况和分散程度。
最低0.47元/天 解锁文章
559

被折叠的 条评论
为什么被折叠?



