关于matplotlib和numpy+pandas的初级运用(一)

代码&数据源

来自《Python 数据分析与应用》和《Python数据分析与挖掘实战》

任务概要

通过学习numpy和pandas的初级用法,将npy/npz ,xsl的数据以series和Dataframe的形式导入,经过基本的Data clean,最后作图,得到可视化数据和相关有效值

实战例1

2000-2017年GDP基础分析

原有数据

来自

…data\xxx.npy
在这里插入图片描述
其中,[ 2 ]代表GDP,[ 3: ,5:] 代表第一到第三产业的GDP,[ 6: ,15:] 代表’农业’,‘工业’,‘建筑’,‘批发’,‘交通’,‘餐饮’,‘金融’,‘房地产’,‘其他’

数据清理

因书中说明,该数据没有异常值,故不考虑,实战二有相关方法。

任务实现

通过点线图,直方图,箱线图来可视化数据。
自用代码如下:

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' ## 设置中文显示
plt.rcParams['axes.unicode_minus'] = False
data = np.load('../data/国民经济核算季度数据.npz',allow_pickle=True)
values = data['values']
gdpI = [list(values[:,3]),list(values[:,4]),list(values[:,5])]
gdpP = ([list(values[:,i]) for i in range(6,15)])
labelI = ['第一产业'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值