hdu6059 Kanade's trio(字典树)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6059

题意:

给你一组数,让你在其中找到多少个三元组,ai,aj,ak满足ai^aj<=aj^ak。

解:

我们需要判定ai^aj<=aj^ak的话,那么ai和ak的前t-1位都相等的话,第t位不相等时,只有ai[t]==aj[t],ak[t]!=aj[t]时成立。

那么我们利用字典树进行储存数据,然后记录每个数的相同的位数以及最高不同位,进行每位不相同出现的次数。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
const int maxn=5e5+10;
const int node=maxn*31;
int cnt[31][2],num[30];
long long ext=0,ans;
int size;
struct Tree{
    int son[2];
    int cnt,ext;
}tree[node];
int a[maxn];
typedef long long ll;
void cal(int tmp,long long c){
    ans+= tree[tmp].cnt*1ll*(tree[tmp].cnt-1)/2;
    ext+=(c-tree[tmp].cnt)*1ll*tree[tmp].cnt-tree[tmp].ext;
}

void insert(int x)
{
    int tmp=0;
    for(int i=0;i<30;i++)
    {
        if(!tree[tmp].son[num[i]]){
        tree[tmp].son[num[i]]=++size;
        }
        if(tree[tmp].son[1-num[i]])
        {
            cal(tree[tmp].son[1-num[i]],cnt[i][1-num[i]]);
        }
        tmp = tree[tmp].son[num[i]];
        tree[tmp].cnt++;
        tree[tmp].ext += cnt[i][num[i]] - tree[tmp].cnt;
    }
    return ;
}

int main()
{
    int t,n;
    scanf("%d",&t);
    while(t--)
    {
       scanf("%d",&n);
       memset(tree,0,sizeof(tree));
       memset(cnt,0,sizeof(cnt));
       size=0,ans=0,ext=0;
       for(int i=1;i<=n;i++)
       {
           scanf("%d",&a[i]);
           int tmp = a[i];
           for(int j=29;j>=0;j--)
           {
               num[j] = tmp%2;
               cnt[j][tmp%2]++;
               tmp/=2;
           }
           insert(i);
       }
       printf("%lld\n",ans+ext);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值