poj 3013 (最短路)

题目链接:http://poj.org/problem?id=3013

题意: 给定一张无向图, 要求建立一棵树, 使建这棵树花费最小。(树根为结点1)具体是: 每个结点都有自己的权值, 每条边有一个 单价(可理解为长度), 构建每条边的花费是  此边的单价 * 所有后代的结点权重之和。

如果发现 每个结点的最小花费 = 该节点的权值 * 到根节点的最短距离 , 那么这个题就很简单了。注意,用vector应该会超时。

AC代码:

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;

const int maxn = 50020;
const long long inf = 0x3f3f3f3f3f;
long long d[maxn];
int head[maxn];
//int vis[maxn];
int w[maxn];
struct node{
    int v,w,next;
    node(){}
    node(int v,int w,int next):v(v),w(w),next(next){}
}edge[maxn*2]; int cnt = 0;

void init(){
    for(int i = 0;i < maxn;i ++){
        d[i] = inf;
        head[i] = -1;
     //   vis[i] = 0;
        w[i] = 0;
    }
    cnt = 0;
}

void dijsktra(){
    d[1] = 0;
    priority_queue<pair<int,int> >Q;
    Q.push(make_pair(-d[1],1));        //放负距离,那么原先距离长的就因为加了负号,就小了。以保证每次能够取出最短距离
    while(!Q.empty()){
        int now = Q.top().second;
        Q.pop();
       // if(vis[now]) continue;
       // vis[now] = 1;
        for(int i = head[now];i != -1;i = edge[i].next){
            int v = edge[i].v;
            if(/*!vis[v] &&*/ d[v] > d[now] + edge[i].w){
                d[v] = d[now] + edge[i].w;
                Q.push(make_pair(-d[v],v));
            }
        }
    }
}

int main()
{
    int t; scanf("%d",&t);
    while(t--){
        init();
        int v,e; scanf("%d%d",&v,&e);
        for(int i = 1;i <= v;i ++){
            scanf("%d",&w[i]);
        }
        int a,b,c;
        for(int i = 0;i < e;i ++){
            scanf("%d%d%d",&a,&b,&c);
            edge[cnt] = node(b,c,head[a]);
            head[a] = cnt ++;
            edge[cnt] = node(a,c,head[b]);
            head[b] = cnt ++;
        }
        dijsktra();
        int flag = 1;
        long long sum = 0;
        for(int i = 1;i <= v;i ++){
            if(d[i] == inf){
                flag = 0;
                break;
            }
            sum += w[i] * d[i];
        }
        if(!flag) printf("No Answer\n");
        else printf("%lld\n",sum);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值