题目链接:http://poj.org/problem?id=3013
题意: 给定一张无向图, 要求建立一棵树, 使建这棵树花费最小。(树根为结点1)具体是: 每个结点都有自己的权值, 每条边有一个 单价(可理解为长度), 构建每条边的花费是 此边的单价 * 所有后代的结点权重之和。
如果发现 每个结点的最小花费 = 该节点的权值 * 到根节点的最短距离 , 那么这个题就很简单了。注意,用vector应该会超时。
AC代码:
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 50020;
const long long inf = 0x3f3f3f3f3f;
long long d[maxn];
int head[maxn];
//int vis[maxn];
int w[maxn];
struct node{
int v,w,next;
node(){}
node(int v,int w,int next):v(v),w(w),next(next){}
}edge[maxn*2]; int cnt = 0;
void init(){
for(int i = 0;i < maxn;i ++){
d[i] = inf;
head[i] = -1;
// vis[i] = 0;
w[i] = 0;
}
cnt = 0;
}
void dijsktra(){
d[1] = 0;
priority_queue<pair<int,int> >Q;
Q.push(make_pair(-d[1],1)); //放负距离,那么原先距离长的就因为加了负号,就小了。以保证每次能够取出最短距离
while(!Q.empty()){
int now = Q.top().second;
Q.pop();
// if(vis[now]) continue;
// vis[now] = 1;
for(int i = head[now];i != -1;i = edge[i].next){
int v = edge[i].v;
if(/*!vis[v] &&*/ d[v] > d[now] + edge[i].w){
d[v] = d[now] + edge[i].w;
Q.push(make_pair(-d[v],v));
}
}
}
}
int main()
{
int t; scanf("%d",&t);
while(t--){
init();
int v,e; scanf("%d%d",&v,&e);
for(int i = 1;i <= v;i ++){
scanf("%d",&w[i]);
}
int a,b,c;
for(int i = 0;i < e;i ++){
scanf("%d%d%d",&a,&b,&c);
edge[cnt] = node(b,c,head[a]);
head[a] = cnt ++;
edge[cnt] = node(a,c,head[b]);
head[b] = cnt ++;
}
dijsktra();
int flag = 1;
long long sum = 0;
for(int i = 1;i <= v;i ++){
if(d[i] == inf){
flag = 0;
break;
}
sum += w[i] * d[i];
}
if(!flag) printf("No Answer\n");
else printf("%lld\n",sum);
}
return 0;
}