题目链接:http://poj.org/problem?id=1236
题目所求:最少需要几个点,能够从这些点到达所有点。 最少增加多少条边,能够使此有向图为强连通图。
思路:用 tarjan 求出强连通分量 然后 缩点建立有向图。设 入度为0的点总数为ans1,出度为0的点总数为ans2。
答案1:即为ans1。 答案2: 显然为 max(ans1,ans2)。 注意, 当只有一个强连通分量,也就是图已经强连通, 答案2为0。
AC代码:
#include<cstdio>
#include<stack>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 110;
int vis[maxn];
int dfn[maxn]; //时间戳
int low[maxn]; //最小时间戳
int line[maxn]; //缩点
int head[maxn];
struct node{
int v, next;
node(){}
node(int v, int next): v(v), next(next) {}
}edge[maxn * maxn];
int id, _time;
stack<int> s;
void dfs(int st) {
dfn[st] = ++_time;
low[st] = _time;
vis[st] = 1;
s.push(st);
for(int i = head[st]; i != -1; i = edge[i].next) {
int v = edge[i].v;
if(vis[v] == 0) dfs(v);
if(vis[v] == 1) low[st] = min(low[v], low[st]);
}
if(dfn[st] == low[st]) {
id ++;
while(1){ ///一直弹出至st点(包括st) 都属于同一个强连通分量
int x = s.top();
s.pop();
line[x] = id;
vis[x] = -1; ///注意是 -1
if(x == st) break;
}
}
}
void tarjan(int n) {
id = 0; _time = 0;
memset(vis,0,sizeof(vis));
while(!s.empty()) s.pop();
for(int i = 1; i <= n; i ++)
if(!vis[i]) dfs(i);
}
int main() {
int n;
while(~scanf("%d", &n)) {
memset(head, -1, sizeof(head));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(line, 0, sizeof(line));
int in; int cnt = 0;
for(int i = 1; i <= n; i ++) {
do {
scanf("%d", &in);
if(in != 0) {
edge[cnt] = node(in, head[i]);
head[i] = cnt ++;
}
} while(in != 0);
}
tarjan(n);
if(id == 1) { printf("1\n0\n"); continue; }
int In[maxn] = {0}, Out[maxn] = {0};
for(int u = 1;u <= n;u ++){
for(int i = head[u];i != -1;i = edge[i].next){
int v = edge[i].v;
if(line[u] != line[v]){ ///如果 line[u] != line[v] 显然, 两个点不属于同一个强连通分量, 可计算缩点后 点的出度 入度
Out[line[u]] ++;
In[line[v]] ++;
}
}
}
int ans1 = 0,ans2 = 0;
for(int i = 1;i <= id;i ++){
if(In[i] == 0) ans1 ++;
if(Out[i] == 0) ans2 ++;
}
printf("%d\n%d\n",ans1,max(ans1,ans2));
}
return 0;
}