POJ - 1061 青蛙的约会(扩展欧几里得 解同余方程,求最小正数解)

青蛙的约会

有两只青蛙,青蛙A和青蛙B,它们在一个首尾相接的数轴上。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。数轴总长L米。要求它们至少跳了几次以后才会碰面。 

 


根据题意 可有方程  ( x + m * t ) % L = ( y + n * t ) % L

                           即  x + m * t = y + n * t + k * L (k 是整数)

                    化简有  ( m - n ) * t + k * L = y - x                     即 ax + by = c 类型

扩展欧几里得:是用来在已知a, b求解一组x,y,使它们满足贝祖等式: ax+by = gcd(a, b)(解一定存在,根据数论中的相关定理)。

所以我们可求得    ( m - n ) * t + k * L = gcd(m - n,L)  这个等式的一组解。由上述简介可知,当  ( y - x ) % gcd(m - n,L) != 0 时,原方程无解。

到这一步就是方程有解的情况:

首先引入两个定理:

定理一:若gcd(a, b) = 1,则方程ax ≡ c (mod b)在[0, b-1]上有唯一解。

定理二:若gcd(a, b) = d,则方程ax ≡ c (mod b)在[0, b/d - 1]上有唯一解。

对方程,设  a = ( m - n ) , b = L , c = gcd(a,b) ,则有  a * t + b * k = c,且设此方程的一组特解为 (t_{0},k_{0})

那么 ( m - n ) * t + k * L = y - x  有  a\frac{y - x}{c} * t + b\frac{y - x}{c} * k = y - x,显然  (y - x) = gcd(a\frac{y-x}{c},b\frac{y-x}{c}),且此方程有一组特解  (t_{0}\frac{y- x}{c},k_{0}\frac{y-x}{c})

由定理二,方程  a\frac{y - x}{c} * t + b\frac{y - x}{c} * k = y - x 的最小正数解在 [0,\frac{b}{c} - 1] 上。( 其实和  a * t + b * k = c 一样 )

所以 t 最后的最小正数解即为 t_{0}\frac{y- x}{c} mod \frac{b}{c},由于原本可能为负,所以 mod 之后还需要 + (b / c)  再 mod (b / c)

 

贴上代码:

#include<iostream>
#include<cstdio>
#define debug(x) cout << "[" << #x <<": " << (x) <<"]"<< endl
#define pii pair<int,int>
#define clr(a,b) memset((a),b,sizeof(a))
#define rep(i,a,b) for(int i = a;i < b;i ++)
#define pb push_back
#define MP make_pair
#define LL long long
#define ull unsigned LL
#define ls i << 1
#define rs (i << 1) + 1
#define INT(t) int t; scanf("%d",&t)

using namespace std;

LL exgcd(LL a,LL b,LL &x,LL &y){
    if(b == 0){
        x = 1;
        y = 0;
        return a;
    }
    LL r = exgcd(b,a % b,x,y);
    LL tmp = x;
    x = y;
    y = tmp - a / b * y;
    return r;
}

int main() {
    LL x,y,m,n,l;
    while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l)){
        if(m < n){
            swap(m,n);
            swap(x,y);
        }
        LL t,k;
        LL a = m - n,b = l;
        LL c = exgcd(a,b,t,k);
        LL tmp = ((y - x) % l + l) % l;
        if(tmp % c != 0){
            printf("Impossible\n");
        }
        else {
            b = b / c;
            tmp = tmp / c;
            t = tmp * t;
            cout << (t % b + b) % l << endl;
        }
    }
    return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值