偏导数与梯度

偏导数1

定义
假设 f f f是个多元函数,例如:
f ( x , y ) = x 2 y + sin ⁡ ( y ) f(x,y) = x^2y+\sin (y) f(x,y)=x2y+sin(y)
函数 f f f可以解释为 y y y为自变量而 x x x为常数的函数:
f ( x , y ) = f x ( y ) = x 2 y + sin ⁡ ( y ) f(x,y)=f_x(y)=x^2y+\sin (y) f(x,y)=fx(y)=x2y+sin(y)
也就是说,每一个 x x x的值定义了一个函数,记为 f x fx fx,它是一个一元函数。也就是说:
f x ( y ) = x 2 y + sin ⁡ ( y ) f_x(y)=x^2y+\sin (y) fx(y)=x2y+sin(y)

一旦选择了一个 x x x的值,例如 a a a,那么 f ( x , y ) f(x,y) f(x,y)便定义了一个函数 f a fa fa,把 y y y映射到 a 2 y + sin ⁡ ( y ) a^2y+\sin (y) a2y+sin(y)
f a ( y ) = a 2 y + sin ⁡ ( y ) f_a(y) = a^2y+\sin (y) fa(y)=a2y+sin(y)
在这个表达式中, a a a是常数,而不是变量,因此 f a fa fa是只有一个变量的函数,这个变量是y。这样,便可以使用一元函数的导数的定义:
f a ′ ( y ) = a 2 + cos ⁡ ( y ) f'_a(y) = a^2+\cos (y) fa(y)=a2+cos(y)
以上的步骤适用于任何 a a a的选择。把这些导数合并起来,便得到了一个函数,它描述了f在y方向上的变化:
∂ f ∂ y ( x , y ) = x 2 + cos ⁡ ( y ) {\partial f \over \partial y}(x,y)=x^2+\cos (y)

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值