- 博客(12)
- 收藏
- 关注
原创 昇思25天学习打卡营第11天|基于MindSpore的红酒分类实验
K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967),是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计出这些样本的类别并进行投票,票数最多的那个类就是分类的结果。KNN的三个基本要素:K值,一个样本的分类是由K个邻居的“多数表决”确定的。K值越小,容易受噪声影响,反之,会使类别之间的界限变得模糊。
2024-07-12 18:28:49 1772
原创 昇思25天学习打卡营第10天|SSD目标检测
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法。使用Nvidia Titan X在VOC 2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(mean Average Precision)以及59FPS;对于512x512的网络,达到了76.9%mAP ,超越当时最强的Faster RCNN(73.2%mAP)。具体可参考论文[1]。
2024-07-10 20:04:16 1949
原创 昇思25天学习打卡营第9天|ResNet50图像分类
ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比20层网络训练误差和测试误差更大,随着网络的加深,其误差并没有如预想的一样减小。
2024-07-09 19:32:23 705
原创 昇思25天学习打卡营第8天|ResNet50迁移学习
在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章将使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。迁移学习详细内容见。
2024-07-07 15:29:23 871
原创 昇思25天学习打卡营第7天|FCN图像语义分割
FCN主要用于图像分割领域,是一种端到端的分割方法,是深度学习应用在图像语义分割的开山之作。通过进行像素级的预测直接得出与原图大小相等的label map。因FCN丢弃全连接层替换为全卷积层,网络所有层均为卷积层,故称为全卷积网络。全卷积神经网络主要使用以下三种技术:卷积化(Convolutional)使用VGG-16作为FCN的backbone。VGG-16的输入为224*224的RGB图像,输出为1000个预测值。VGG-16只能接受固定大小的输入,丢弃了空间坐标,产生非空间输出。
2024-07-06 22:20:52 721
原创 昇思25天学习打卡营第6天|模型训练
从网络构建中加载代码,构建一个神经网络模型。nn.ReLU(),nn.ReLU(),代码功能类定义 (Network类)继承自nn.Cell,这是MindSpore中所有自定义模型的基类。初始化方法 (__init__方法)在初始化方法中,首先调用了父类nn.Cell的初始化方法。:将输入的多维数据展平为一维。:定义了一个序列化的神经网络结构,其中包括几个全连接层和ReLU激活函数。:第一层全连接层,将输入维度为28x28(展平后的输入)转换为512维。nn.ReLU()
2024-07-01 21:43:31 900
原创 昇思25天学习打卡营第5天|函数式自动微分
神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。
2024-07-01 01:21:23 2000
原创 昇思25天学习打卡营第5天|网络构建
当我们定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。construct意为神经网络(计算图)构建,相关内容详见使用静态图加速。nn.ReLU(),nn.ReLU(),构建完成后,实例化Network对象,并查看其结构。我们构造一个输入数据,直接调用模型,可以获得一个十维的Tensor输出,其包含每个类别的原始预测值。方法不可直接调用。logits在此基础上,我们通过一个nn.Softmax。
2024-06-29 21:32:53 865
原创 昇思25天学习打卡营第4天|数据集
模块提供了一些常用的公开数据集和标准格式数据集的加载API。对于MindSpore暂不支持直接加载的数据集,可以构造自定义数据加载类或自定义数据集生成函数的方式来生成数据集,然后通过接口实现自定义方式的数据集加载。支持通过可随机访问数据集对象、可迭代数据集对象和生成器(generator)构造自定义数据集,下面分别对其进行介绍。
2024-06-28 22:03:05 739
原创 昇思25天学习打卡营第3天|张量
张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 𝑛𝑛 维空间内,有 𝑛𝑟𝑛𝑟 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。𝑟𝑟 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。张量是一种特殊的数据结构,与数组和矩阵非常相似。张量()是MindSpore网络运算中的基本数据结构。
2024-06-26 21:47:33 552
原创 昇思25天学习打卡营第1天|快速入门
4、使用map对图像数据及标签进行变换处理,然后将处理好的数据集打包为大小为64的batch。从准备软件库开始,慢慢的对图像数据进行初步处理,将数据集打包为大小为64的batch。对数据集进行迭代访问,查看数据和标签的shape和datatype。通过MindSpore的API来快速实现一个简单的深度学习模型。打印数据集中包含的数据列名,用于dataset的预处理。
2024-06-24 22:18:47 338
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人