昇思25天学习打卡营第6天|模型训练

1、模型训练

模型训练一般分为四个步骤:

  1. 构建数据集。
  2. 定义神经网络模型。
  3. 定义超参、损失函数及优化器。
  4. 输入数据集进行训练与评估。

现在我们有了数据集和模型后,可以进行模型的训练与评估。

2、构建数据集

首先从数据集 Dataset加载代码,构建数据集。

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)


def datapipe(path, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = MnistDataset(path)
    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

train_dataset = datapipe('MNIST_Data/train', batch_size=64)
test_dataset = datapipe('MNIST_Data/test', batch_size=64)
  1. 下载MNIST数据集:

    • 使用 download 函数从指定的URL下载MNIST数据集,并将其解压到当前目录 ('./')。
  2. 数据管道 (datapipe 函数):

    • 图像变换操作: 定义了一系列操作,用于对数据集中的每个图像进行预处理。这些操作包括将图像调整为28x28像素大小、将像素值缩放到[0, 1]、使用MNIST数据集的统计数据进行归一化,并将图像格式从HWC(高度、宽度、通道)转换为MindSpore需要的CHW(通道、高度、宽度)格式。

    • 标签变换操作: 将标签数据转换为 mindspore.int32 类型,以便在MindSpore中进行模型训练。

    • 数据集加载和转换: 加载指定路径下的MNIST数据集,使用 map 函数应用图像和标签的变换操作,然后批量化数据集为指定的 batch_size 大小。

  3. 访问数据集:

    • train_dataset 和 test_dataset 是可以迭代的数据集对象,准备好用于训练和评估模型。你可以使用 create_dict_iterator() 迭代器来访问数据集中的图像和标签数据,然后根据需求处理这些数据。

3、定义神经网络模型

网络构建中加载代码,构建一个神经网络模型。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()

代码功能

  1. 类定义 (Network 类):

    继承自 nn.Cell,这是MindSpore中所有自定义模型的基类。
  2. 初始化方法 (__init__ 方法):

    • 在初始化方法中,首先调用了父类 nn.Cell 的初始化方法。
    • self.flatten = nn.Flatten():将输入的多维数据展平为一维。
    • self.dense_relu_sequential:定义了一个序列化的神经网络结构,其中包括几个全连接层和ReLU激活函数。
      • nn.Dense(28*28, 512):第一层全连接层,将输入维度为28x28(展平后的输入)转换为512维。
      • nn.ReLU():第一层后的ReLU激活函数。
      • nn.Dense(512, 512):第二层全连接层,输入512维,输出512维。
      • nn.ReLU():第二层后的ReLU激活函数。
      • nn.Dense(512, 10):最后一层全连接层,输入512维,输出10维,对应于10个类别的输出。
  3. 构造方法 (construct 方法):

    • construct 方法用于定义模型的前向传播逻辑。
    • x = self.flatten(x):将输入数据 x 展平为一维。
    • logits = self.dense_relu_sequential(x):通过序列化的神经网络层进行前向传播,得到输出 logits
  4. 实例化模型 (model = Network()):

    • 创建了一个 Network 类的实例 model,可以直接用于训练和推理。

4、定义超参、损失函数和优化器

超参

超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:

公式中,𝑛𝑛是批量大小(batch size),ηη是学习率(learning rate)。另外,𝑤𝑡𝑤𝑡为训练轮次𝑡𝑡中的权重参数,∇𝑙∇𝑙为损失函数的导数。除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:

  • 训练轮次(epoch):训练时遍历数据集的次数。

  • 批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。

  • 学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。

    epochs = 3
    batch_size = 64
    learning_rate = 1e-2

    损失函数

    损失函数(loss function)用于评估模型的预测值(logits)和目标值(targets)之间的误差。训练模型时,随机初始化的神经网络模型开始时会预测出错误的结果。损失函数会评估预测结果与目标值的相异程度,模型训练的目标即为降低损失函数求得的误差。

    常见的损失函数包括用于回归任务的nn.MSELoss(均方误差)和用于分类的nn.NLLLoss(负对数似然)等。 nn.CrossEntropyLoss 结合了nn.LogSoftmaxnn.NLLLoss,可以对logits 进行归一化并计算预测误差。

    loss_fn = nn.CrossEntropyLoss()

    优化器

    模型优化(Optimization)是在每个训练步骤中调整模型参数以减少模型误差的过程。MindSpore提供多种优化算法的实现,称之为优化器(Optimizer)。优化器内部定义了模型的参数优化过程(即梯度如何更新至模型参数),所有优化逻辑都封装在优化器对象中。在这里,我们使用SGD(Stochastic Gradient Descent)优化器。

    我们通过model.trainable_params()方法获得模型的可训练参数,并传入学习率超参来初始化优化器。

    optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

    在训练过程中,通过微分函数可计算获得参数对应的梯度,将其传入优化器中即可实现参数优化,具体形态如下:

    grads = grad_fn(inputs)

    optimizer(grads)

5、训练与评估

设置了超参、损失函数和优化器后,我们就可以循环输入数据来训练模型。一次数据集的完整迭代循环称为一轮(epoch)。每轮执行训练时包括两个步骤:

  1. 训练:迭代训练数据集,并尝试收敛到最佳参数。
  2. 验证/测试:迭代测试数据集,以检查模型性能是否提升。

接下来我们定义用于训练的train_loop函数和用于测试的test_loop函数。

使用函数式自动微分,需先定义正向函数forward_fn,使用value_and_grad获得微分函数grad_fn。然后,我们将微分函数和优化器的执行封装为train_step函数,接下来循环迭代数据集进行训练即可。

# Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train_loop(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

test_loop函数同样需循环遍历数据集,调用模型计算loss和Accuray并返回最终结果。

def test_loop(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

我们将实例化的损失函数和优化器传入train_looptest_loop中。训练3轮并输出loss和Accuracy,查看性能变化。

loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(model, train_dataset)
    test_loop(model, test_dataset, loss_fn)
print("Done!")

6、操作练习

        通过以上内容,我学到了深度学习模型训练中关键的三个要素:超参数、损失函数和优化器。超参数如学习率、批次大小和训练轮次,直接影响着模型训练的效果和速度;损失函数则是衡量模型预测与真实值之间差异的关键指标;优化器如SGD则负责根据损失函数的梯度更新模型参数,以使模型逐步优化。这些知识点不仅帮助我理解了深度学习模型背后的工作原理,还使我能够更好地设计和调整模型,以达到更高的性能和准确性。 

  • 9
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值