
Dify平台
文章平均质量分 87
关于Dify相关内容,Dify 是一个开源的大语言模型(LLM)应用开发平台
虫无涯
CSDN测试领域优质创作者 | CSDN博客专家 | 阿里云专家博主 | 华为云享专家 | 51CTO专家博主 |【专注测试领域各种技术研究、分享和交流~】
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
本文介绍了如何利用Dify Agent与AntV打造高效的数据可视化解决方案。通过Dify Agent的低代码特性快速构建数据处理流程,结合AntV丰富的图表库实现专业可视化效果。文章详细演示了从创建Dify Agent、添加AntV工具到设置提示词的全过程,并以一周温度数据为例,展示了生成条形图、柱状图、面积图等多种图表的方法。该方案既能简化开发流程,又能满足个性化可视化需求,为开发者提供了一套可落地的实战参考。原创 2025-09-17 18:39:13 · 981 阅读 · 0 评论 -
Dify调用硅基流动中模型时,流程编排中运行模型不显示思考过程,如何解决?
本文介绍了在Dify平台调用硅基流动模型时,如何解决流程编排中不显示思考过程的问题。首先通过硅基流动模型API获取免费模型并创建API key,然后在Dify中下载插件并创建工作流。初始运行发现模型虽能输出详细思考内容(如1+1问题的多角度分析),但前端不显示思考过程。最终通过优化工作流设计,新增文本变量和下拉选项,成功在前端展示模型的完整思考过程。解决方案着重于正确配置模型节点参数,确保输出内容包含<think>标签内的完整推理逻辑。原创 2025-09-12 11:39:11 · 893 阅读 · 0 评论 -
【详细教程】如何在Ubuntu上本地部署Dify?
摘要:本文介绍了在Ubuntu系统上本地部署Dify开源大语言模型平台的详细步骤。Dify是一个支持多模型(如GPT、Llama等)的低代码AI应用开发平台,提供RAG增强、Agent框架等功能。部署过程包括:1)安装Docker和Docker Compose;2)获取Dify源码并配置环境变量;3)解决国内镜像拉取问题;4)通过docker-compose启动服务。完成部署后,用户可通过localhost访问并初始化管理员账号,快速构建生成式AI应用。文中还提供了常见问题排查方法和常用命令参考。原创 2025-09-11 11:27:04 · 1371 阅读 · 0 评论