matlab-基于Malthus人口预测模型(笔记)

Malthus人口预测模型

                                              \frac{dP}{dt}=r·P              

P - 人口数量
t - 时间
r - 人口增长率

这个方程的假设体现在:

  1. 采用指数增长方程形式,呈指数增长趋势。

  2. 增长率r为正常数,不随时间变化。

  3. 未考虑人口增长的饱和状态。

  4. 未考虑出生率、死亡率等人口学参数。

  5. 未考虑人口增长对资源环境的反馈作用。

  6. 未考虑经济、政策等外生变量的影响。

  7. 未考虑战争、灾害等灾变的影响。

  8. 未考虑人口流动对区域分布的影响。

  9. 未考虑人口年龄结构、城乡分布等结构性差异。

根据马尔萨斯人口增长模型,人口数量P与时间t的关系可表示为:

                                                          P=P_{_{0}}·e^{r·(t-t_{0}) }                        

P0 - 初始人口数量
r - 人口增长率
e - 自然常数,约等于2.718

该式表示人口按照指数增长的关系随时间变化,即随着时间的推移,人口数量呈指数增长状态。

这个关系的主要特点有:

  1. 当t=0时,P(0)=P0,符合初始人口数量。

  2. 当t增大时,P随之快速增长。

  3. 增长率和初始人口数量会影响具体的增长速度。

  4. 在时间段内呈指数增长,不会出现饱和。

  5. 该关系反映了马尔萨斯模型的核心假设。

  6. 可以从数据中评估模型的参数P0和r。

  7. 可以用于短期人口增长预测。

 matlab导入简单数据

                                                                 

year=1790:10:2000;
population=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4];
p2=log(populati
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值