Malthus人口预测模型
P - 人口数量
t - 时间
r - 人口增长率
这个方程的假设体现在:
-
采用指数增长方程形式,呈指数增长趋势。
-
增长率r为正常数,不随时间变化。
-
未考虑人口增长的饱和状态。
-
未考虑出生率、死亡率等人口学参数。
-
未考虑人口增长对资源环境的反馈作用。
-
未考虑经济、政策等外生变量的影响。
-
未考虑战争、灾害等灾变的影响。
-
未考虑人口流动对区域分布的影响。
-
未考虑人口年龄结构、城乡分布等结构性差异。
根据马尔萨斯人口增长模型,人口数量P与时间t的关系可表示为:
P0 - 初始人口数量
r - 人口增长率
e - 自然常数,约等于2.718
该式表示人口按照指数增长的关系随时间变化,即随着时间的推移,人口数量呈指数增长状态。
这个关系的主要特点有:
-
当t=0时,P(0)=P0,符合初始人口数量。
-
当t增大时,P随之快速增长。
-
增长率和初始人口数量会影响具体的增长速度。
-
在时间段内呈指数增长,不会出现饱和。
-
该关系反映了马尔萨斯模型的核心假设。
-
可以从数据中评估模型的参数P0和r。
-
可以用于短期人口增长预测。
matlab导入简单数据
year=1790:10:2000;
population=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4];
p2=log(populati